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Abstract: Patients with thyroid dysfunction have a high likelihood of underdiagnosis of Chronic Kidney Disease (CKD)
and Acute Kidney Injury (AKI) because the relationship between endocrine, renal, and metabolic biomarkers are
complex and nonlinear. Conventional risk predictive models are unable to model these heterogeneous relationships,
which leads to delayed nephroprotective interventions. To overcome this hurdle, this paper suggests the Contrastive
Learning with Feature Concatenation (CLFC) model on the stratification of CKD/AKI disease at early and precise
stages during the management of thyroid disease patients. The model uses modality-specific encoders, which learn latent
representations using thyroid, renal, and metabolic data, but a self-supervised contrastive learning module uses the NT-
Xent loss to ensure consistency of the representations. The trained multimodal embeddings are then combined with late-
stage concatenation of features and trained with the help of supervised classification. Empirical analysis of a multimodal
clinical dataset proves that the presented solution performs much better than the traditional machine learning and deep
learning baselines, with higher accuracy, Fl-score, and AUC. The importance of contrastive learning, and renal
biomarkers in heightening the risk discrimination is further supported by the ablation studies. The suggested framework
provides a clinically interpretable scalable robust solution to the assessment of CKD/AKI risk that can be used to make
early nephroprotective decisions in thyroid-impacted populations.

Keywords: Chronic Kidney Diseases, Acute Kidney Injury, Decision Support Systems, self supervised learning,
Contrastive learning

1. Introduction

Thyroid diseases, including hypothyroidism, seem to
predispose chronic kidney disease (CKD) to occur or
be exacerbated, and evidence suggests that there is a
bidirectional effect in which kidney problems can also
influence the functioning of the thyroid. The evidence
indicates that the early detection of these risks could
be used to recommend nephroprotective interventions,
such as early thyroid treatment, to possibly decelerate
the CKD progression. Contrastive learning with
feature concatenation shows the potential of Al to
analyze various types of data, including medical
images and lab results, and patient history to predict
kidney risks in thyroid patients more accurately,
although this field is still in its infancy and still needs
a thorough validation [1]. Thyroid hormones help
balance metabolism and other body functions but
when out of balance they can add to the strain of the
kidney. An example is that low levels of thyroid
(hypothyroidism) are linked to slow rate of kidney

filtration rates, which may cause CKD in the long-run.
This association appears more apparent with older
adults, in which untreated thyroid conditions may
hasten the rate of kidney deterioration, but these may
be alleviated through adequate treatment.
Hyperthyroidism is a disease that is not closely related
to CKD but in some instances, it accelerates already
existing kidney issues[2].

Conventional testing methods are based on simple lab
analyses such as TSH and creatinine levels which may
overlook subtle trends. It can be possible that Al
methods, which integrate various sources of data,
including imaging and clinical notes, would offer a
more comprehensive view. Such methods as
contrastive learning assists Al to identify meaningful
patterns using small or diverse data, whereas feature
concatenation combines these findings to make
improved risk predictions[3]. This may help doctors in
prioritizing kidney safety in thyroid patients but
further studies are required to ascertain the
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dependability in a wider population. The Al tools
could potentially be used to support the prevention of
CKD because by prioritizing the risk, there could be
interventions i.e. lifestyle changes or drugs to protect
kidney health at earlier stages. Nevertheless, issues
such as data privacy and explainable models should be
overcome to instill trust in clinical practice. In general,
there is a tendency in favor of the fact that these
methods can help to increase personalized care, but
they are not a standard yet[4].

Thyroid disorders are a huge health burden around the
world, impacting millions, and causing multiple
comorbidities, and chronic kidney disease (CKD)
poses an especially important issue because of its high
prevalence and progressive character.
Hypothyroidism, typified by elevated thyroid-
stimulating hormone (TSH) concentrations and
decreased triiodothyronine (T3) and thyroxine (T4)
has been systematically associated with damaged
renal function, lowered glomerular filtration rate
(GFR) and amplified hazards of CKD progression.
This two-way communication of effects- CKD can
also interfere with the pituitary-thyroid axis and
peripheral thyroid hormone metabolism highlight the
necessity of combined strategies to risk stratification
that put less emphasis on nephroprotection.
Indicatively, in CKD patients uremia usually presents
as low T3 syndrome and untreated hypothyroidism
can actually aggravate the electrolyte imbalances and
further renal deterioration, especially in the elderly

where the anti-thyroid peroxidase (anti-TPO)
antibodies can lead to more severe renal
dysfunction[5,6,7].

The existing clinical approaches to nephroprotective
risk assessment of thyroid disorders are based on
univariate biomarkers, including TSH, creatinine, and
estimated GFR (eGFR), which is yet not
comprehensive enough to take into account the
complex interplay between thyroid and renal systems.
There is a separate independent positive association of
subclinical hypothyroidism with odds of CKD, and an
effect that is dose-dependent in large cohorts where
hypothyroidism (TSH >4 mlIU/L) increases
susceptibility to CKD 59 times that of euthyroidism
[8,9]. Although less common in CKD conditions,
hyperthyroidism may cause hyperfiltration leading to
the possible ultimate damage, and so the need to make
holistic and multimodal assessments, integrating
imaging, laboratory data, and clinical histories is
essential to prevent irreparable damage to the kidney
and to intervene at an early stage.

With the introduction of deep learning (DL), the
medical risk stratification has seen a revolution,
allowing to combine heterogeneous data modalities,
but these issues as data scarcity, modalities imbalance,
and missing inputs remain, especially in resource-
constrained settings. Multimodal DLs, combining
structured (e.g., lab values) and unstructured (e.g.,
ultrasound images, clinical notes) data, have been
shown to be more successful in oncology and
cardiovascular predictions with high levels of area
under the curve (AUC) values due to advanced fusion
approaches. The self-supervised method, contrastive
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learning (CL), is particularly effective at learning
strong representations through aligning nearby
instances and contrasting far apart ones and thus
overfitting low-data regimes and improving cross-
modal alignment. In combination with feature
concatenation, an easy-to-use early fusion technique,
it has been shown that CL can be used to refine
multimodal representations, and this has been
demonstrated in cancer risk stratification applications
where the approach enhances explainability and
predictive power[10].

Regardless of these developments, direct applications
to nephroprotective risk in thyroid disorders are not
studied properly, and the models which are in
existence do not consider the primacy of CKD
outcomes.  Frameworks  Attention-based and
transformer-integrated CL models have demonstrated
potential in the ability to deal with missing modalities
and give interpretable information, e.g. attention maps
in the vicinity of tumor regions in neuroimaging, but
must be adapted to endocrine-renal interactions. The
self-supervised and supervised CL methods also
provide further improvements to the feature space due
to the complementary types of information obtained
over modalities as seen in  MRI-based
neurodevelopment predictions and opens
opportunities to thyroid-CKD settings where data
variability is pronounced[11,12].

A new framework that uses contrastive learning and
feature concatenation to stratify nephroprotective
risks associated with thyroid disorders is presented in
this paper, focusing on CKD progression. Our
methodology seeks to enhance the predictive strength
and interpretability by aligning multimodal features,
such as thyroid ultrasounds, tests of kidney
functionality and patient demographics in a single
embedding space, which is a crucial issue that the
existing methodologies fail to cover [14,15]. By using
learnable tokens and contrastive losses, we deal with
modality missingness and improve cross-modal
fusion, which are confirmed on clinical datasets to aid
personalized interventions[13].

2. Related Work

Research indicates that hypothyroidism can exert
CKD in ways such as the change in hemodynamics
and immune responses with the results leaning
towards dose-dependence. But longitudinal data will
be required in order to determine directionality. The
topic of thyroid disorders and chronic kidney disease
(CKD) has become a growing trend in the
endocrinology and nephrology literature due to
epidemiological data showing bilateral relationships
and the possibility of intervention to reduce
nephroprotective risks. This is a literature review that
compiles significant data of clinical and
computational studies which explored CKD as a key
outcome in thyroid patients. The former discusses
epidemiological and mechanistic = connections
between thyroid malfunction and CKD and the
development in multimodal deep learning (DL) to
stratify risks, specifically in contrastive learning (CL)
and feature concatenation approaches. The critical
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reviews emphasize strengths and limitations as well as
gaps in the methodology, which explains why
integrated Al models are required in this area.

2.1 Epidemiological and Clinical Relations
between Thyroid disorders and CKD.

It is reported that the prevalence of CKD has been
increased in people with thyroid diseases especially
hypothyroidism which has been shown to impact renal
functionality via hormonal, hemodynamic and
immunological ways. This two-way interaction is
clarified by a groundbreaking review by Mohamedali
et al. (2014), where hypothyroidism may result in a
low level of cardiac output, a change in the activity of
the renin-angiotensin-aldosterone system (RAAS),
and glomerular morphologic alterations, which
eventually lead to the loss of estimated glomerular
filtration rate (¢GFR) and electrolytes imbalance. The
authors explain that CKD in its turn interferes with
metabolism of thyroid hormones through the presence
of low levels of triiodothyronine (T3) syndrome
induced by uremia as evidenced by the prevalence
estimates up to 20-30 percent of CKD patients having
hypothyroidism. This review is based on cross-
sectional and cohort studies, with clinical implications
which include the reversibility of the renal
dysfunction with levothyroxine treatment, but there
are limitations in the form of observational evidence
without randomized trials to substantiate causality.
Based on this, Huang et al. (2020) carried out a large-
scale cross-sectional study in an integrated health
system where 378,101 adults aged 55 and above were
involved to measure the relationship between
hypothyroidism and CKD. They found an odds ratio
(OR) of 1.25 (95% CI 1.21-1.29) of CKD (eGFR 4
mlIU/L) wusing multivariable logistic regression
adjusted using demographics, diabetes and
hypertension. Subgroup analysis indicated that there
was a dose-effect, as intra-renal vasoconstriction was
associated with increased TSH, which indicated
mechanistic associations with links. The significant
variety and practical nature of the cohort used in the
study and the solid eGFR ascertainment (that needs
many measurements) are strong, yet due to the cross-
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sectional nature, no conclusions can be made about the
temporality aspect, and no proteinuria data restricts
full staging of CKD. The implications of these
findings are that regular thyroid screening of elderly
patients with CKD may help to protect the
nephroprotective process, which is in line with the
recommendations of the American Thyroid
Association. Griffin and Griffin (2024) also decipher
this relationship through a commentary, examining the
role of thyroid hormones in renal hemodynamics and
tubular oxygenation, and hypothyroidism may be
increasing CKD progression through oxidative stress
and fibrosis. They criticize the literature available as
not sufficiently representing subclinical cases and
suggest future longitudinal research studies to
determine the reversible and irreversible effects of
thyroid treatment.

Devi et al. (2025) conducted a cross-sectional study in
recent times, targeting the elderly patients who have
newly developed hypothyroidism, revealing that the
positivity of anti-TPO antibodies is an independent
predictor of renal impairment. Out of 64 hypothyroid
patients, the anti-TPO-positive  group  had
significantly lower eGFR (p<0.05), higher creatinine,
uric acid and ACR relative to the negatives and
multiple regression showed the anti-TPO to be a
predictive agent of ACR (b coefficient positive,
p<0.05). The analysis points to immune-mediated
processes, including the deposition of antibodies in
renal glomeruli, as a theorist of dysfunction, which is
a new contribution of earlier studies on autoimmune
thyroiditis. The internal validity of the study is
strengthened by its controlled design (age, sex, and the
absence of confounding factors, such as diabetes), but
the small sample size and the setting of the study (a
hospital) restrict the applicability. This is clinically
important to emphasize the importance of anti-TPO
testing in risk stratification in geriatric thyroid therapy.
Gopinath et al. (2013) also supported these
relationships among community-dwelling elderly
population as the study showed that hypothyroidism
was associated with CKD using logistic models
(adjusted OR ~1.5), and comorbidities such as
hypertension were important modifiers [16,17,18].

Table 1: Studies on coalition between Thyroid disorders and CKD

Design and Key Findings Mechanisms c .
Study Sample (OR/Prevalence) Analyzed Limitations
Mohamedali Hypothyroidism in 20-30% . .
et al. (2014) Review (N/A) CKD; bidirectional via ﬂzrtzggﬁgamlc, t())izzeg;atll{(gl”?l
[1] RAAS, low T3 ’
Huang et al. Cross-sectional }(1) RolchSr:)liaSiszjor CK(E)S: Vasoconstriction, i(i)ssin causality,
(2020) [2] (n=378,101) YPOLy ’ cardiac output ne
dependent proteinuria
Devi et al. Cross-sectional ’(Mit(l)_gg)o IO%Z?IC;SGFQCE Immune complex Small sample,
(2025)[4] (n=128) p=b00); deposition hospital bias
positives
. - Community-
Gopinath et 1 -\ 1 (n-5000) | Adjusted OR ~1.5 for CKD | Comorbidity limited
al. (2013) [5] interactions L
generalizability
Wang et al Meta-analysis Pooled OR 1.4-1.6 for Oxidative  stress, Heterogeneity in
(2020) [8] (multiple studies) subclinical hypothyroidism fibrosis definitions
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Together, these researches examine CKD as a
multifactorial outcome in thyroid diseases, where
screening and treatment are likely to prevent the
disease. Nonetheless, gaps in analytics continue to
define causality and combination of multimodal
information towards custom risk evaluation.

2.2 Multimodal Deep Learning of Medical Risk
Stratification.

The use of Al and specifically, multimodal DL has
reinvented risk  prediction by  integrating
heterogeneous sources of information, which is
disadvantageous with traditional biomarkers. The
interpretable transformer-based postoperative risk
model that Wan et al. (2025) designed involves the
combination of clinical, radiomic, and pathology data
to predict the risk of intrahepatic cholangiocarcinoma
(ICC) in the postoperative phase. With AUCs of
0.952-0.924 between cohorts the model uses attention
mechanisms to fuse information, which has been
shown biologically through transcriptomics, to be
targeted at tumor-invasive regions. The stratification
in this analysis is much better than the unimodal
methods and the interpretability increases clinical trust
but, the extrapolation to non-oncologic settings such
as thyroid-CKD has not been studied [19, 20].

Li and Xu (2025) suggested a CL framework called
ConMEHR that is a patient stratification based on

EHRs (notes, diseases, symptoms, medications). It is
an extension of topic modeling based on modality and
topic-level CL that aligns the representations in a
single space, achieving better coherence and diversity
scores and better performance compared to baselines
on MIMIC-III and Chinese data. Ablations validate
CL as a strength against high-dimensionality,
investigating its effects of explainable subgroups
against high-dimensionality, and implications of
thyroid-CKD to lab-text fusion include the ability to
adapt to high-dimensionality. Du et al. (2024)
combined the CL and multi-instance learning
(endometrial cancer risk) and combined the features of
MRI and pathology to preoperative stratification.
They optimize their architecture with contrastive
losses, resulting in high AUCs; they demonstrate
efficiency in low-data sensations, and this may be used
in thyroid ultrasounds and renal labs.

Liu et al. (2023) presented an attention-based fusion
of CL and ARMOUR, which are used to make
predictions in clinical settings, including missing
modalities through the use of tokens. It does better
than baselines in multiple tasks, and cross-modal
interactions are studied to increase robustness, and CL
improves representations, which is highly important in
thyroid-CKD, where missing data is very common.

Table 2: Deep Learning Models

. Fusion/CL Analytical
DL Study Modalities Strategy Performance Strengths/Limitations
Wan et al. (2025) Clinical, Transformer Interpretable;
' radiomics, : AUC 0.92-0.95 P "
[10] attention oncology-specific
pathology
. . . High . )
Li & Xu (2025) EHR texts/codes Modality/topic coherence/diversit Explalna}ble subgroups;
[11] CL y no imaging
Du et al. (2024) CL . Low-data efficiency;
[12] MRI, pathology concatenation High AUC cancer-focused
Liu et al. (2023) Structured/unstru Attention + CL Superior to Missing modality
[13] ctured tokens baselines handling; limited tasks

These DL innovations study multimodal interactions
to achieve better accuracy, but there are few studies on
how to address endocrine-renal risks, and CL-feature
concatenation models have the opportunity to
prioritize nephroprotective demands in thyroid
conditions. Although clinical literature confirms
thyroid-CKD relationships, Al literature demonstrates
an untapped potential in the multimodal integration. It
has been concluded that CL is effective in alignment
and robustness, however, until adaptations are
provided, CKD results should take precedence,
considering thyroid-specific modalities (e.g., TSH,
ultrasounds), and explainable results are needed to
make  high-stakes decisions. Data  privacy,
generalizability, and causality should be considered in
future work by conducting of prospective trials.

3. Proposed Model

The proposed model, titled "Contrastive Learning
with Feature Concatenation for Nephroprotective Risk
Stratification in Thyroid Disorders," represents an
innovative multimodal deep neural network designed
to integrate heterogeneous clinical data for predicting
kidney-related risks, with a primary emphasis on
chronic kidney disease (CKD) progression in patients
with thyroid dysfunction. Drawing from established
principles in contrastive learning and multimodal
fusion, the architecture addresses the bidirectional
interplay between thyroid hormones and renal
function, where hypothyroidism may reduce
glomerular filtration rate (GFR) and accelerate CKD,
while CKD can disrupt thyroid metabolism [21, 22].
By leveraging modality-specific encoders, a
contrastive learning module, and a risk prediction
network, the model aims to provide interpretable,
robust stratification to support nephroprotective

© 2026. The Authors. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, CCBY, which allows
others to freely distribute the published article, with the obligatory reference to the authors of original works and original publication in this journal.
For correspondence: Dr. A.V.L.N Sujith, Associate Professor & Dean, Department of IT, Malla Reddy University, Hyderabad, Telangana

Full list of authors information is available at the end of the article.




interventions, such as

replacement or lifestyle modifications
Modality Encoders

Thyroid Data

P@®

TSH, T3, T4

Thyroid
Encoder

Renal Biomarkers
€5

- |
Creatinine, eGFR Rena

Encoder

Metabolic Data

LY 4

HbA1c, BP

=i Positive Pair

Ornapg, / Review

timely thyroid hormone

Contrastive Learning Module Risk Prediction Network

Augmented
Views

R 2
| 9c) P>{ 9z )

Projection
Head

Concatenated

q
________ = I Feature Vector

Similar Pair _-~ ~~ Negative Pair Fusion Layers

Risk Classifier
-

o (oo |

(z;,z*) - S (zj, z+) | || Moderate Risk
‘ L—p» | High Risk
CRCSRO =0

Output
CKD/ AKI Risk Level

====p Negative Pair == Supervised Loss

Figure 1: Proposed Architecture

The model processes three key data modalities:

thyroid hormones (e.g.,

healthcare, such as

resource scenarios[23,24].

The clinical dataset is defined as :

Where

x}: Thyroidbiomarkers(TSH,T3,T4);

x{ renalbiomarkers(creatinine, eGFR)
; x{": Metabolicindicators(HbAlc, BP) ; i
v;: Risk Lable (low Moderate and High)

Each modality is further processed based on specific

encoder
Zit = ft(xlt)
zj = fr(x7)

zi" = fr (")

in which f £ ﬂ, fm are the MLP, CNN, Transformers
based deep neural encoders optimized to preserve

modality specific clinical encoders.

5

TSH, T3,
biomarkers (e.g., creatinine, eGFR), and metabolic
indicators (e.g., HbAlc, blood pressure), reflecting the
multifaceted nature of thyroid-kidney interactions.
These inputs are fed into specialized encoders to
extract latent features, which are then aligned via
contrastive learning to handle data scarcity and
variability—common challenges in medical datasets.
The aligned features are concatenated and passed
through fusion layers to a classifier that outputs risk
levels (low, moderate, high) for CKD or acute kidney
injury (AKI), optimized with supervised loss. This
design builds on similar multimodal frameworks in
those for thyroid nodule
classification, where image and lab data fusion via
concatenation enhances predictive accuracy in low-

D = {(xf, ], 2™, ¥ Hiq =

T4), renal 3.1 Contrastive learning Module
To improve generalization and inter-modal coherence,
contrastive learning is applied using augmented views

of encoded representations. For each encoded vector
Zi, two stochastic augmentations generate:
= °F) _
(Zu Zy ) - C/q(zi)
These are mapped to a latent contrastive space via a
projection head g (+):
— (5 +— o, F

hi=gZ), hi=g(z')
NT-Xent Loss
The contrastive objective minimizes the distance

between positive pairs and maximizes separation from
negative pairs:

hTh;
sim(hy, h;) = ——
(s 1y) |hilh;]
LN—Xn
| exp(sim(hy, hi") /7)
82N 01 erq) exp(sim(hy, o) /T)
where:

e sim(-)is cosine similarity
Tis the temperature parameter

This  enforces  clinically  consistent
representations across perturbations.

latent

3.2 Feature Concatenation and Fusion
After contrastive training, embeddings from all
modalities are concatenated:

concat __ t r m
Zj = [z |z | "]
The concatenated vector is passed through fusion

layers:
h{uswn — d)(ziconcat)
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where ¢ (+)denotes fully connected fusion layers.
3.3 Risk Prediction Network

The fused representation is mapped
probabilities using a softmax classifier:

9, = Softmax(Wh™"" + b)

The supervised loss is defined as:

C
Lsp = — Z Yiclog(e)
c=1

to risk

Ornapg, / Review

where C = 3risk classes.
3.4 Joint Optimization Objective
The final training objective integrates contrastive and
supervised losses:

Lttl = )\1LN-Xn + AzLSp
where A4, Aycontrol representation learning vs.
predictive accuracy.

Algorithm: Contrastive Learning with Feature Concatenation for Nephroprotective Risk Stratification

Input:  Multimodal dataset ‘D; Encoders

(1)(), Temperature T; Weights Ay, Ay
Output: Predicted CDK risk level

fe» [r» fm; Projection

Head g('),’Fusion network

for each minibatch B € D

foreach sample i € B
{

}
end for

Compute Ly.xn
Jor {
each sample 1 € B
Evaluate 7"
end for
Compute LSp
Lttl « A Lyxn + A Lsp
Update model parameters

End for
Return risk predictions

Compute 7t < f,G); 2 FrGD)s 2 fux®)
Evaluate (2,27 ) < A(z); hf < g(z)

i «— [th|zlr|zlm] . hlfusion - (I)(Ziconcat)f ¥, « Softmax(hlfusion)

The suggested algorithm is conceptually based on
representation learning and information-theoretic
concepts, which will address clinically significant
dependencies among heterogeneous biomedical
modalities. All the modality-specific encoders are
trained to learn nonlinear encodings of raw clinical
variables to a latent space that retains intrinsic
statistical structure and removes noise and modality-
specific bias. Theoretically, this relates to learning
enough statistics of every modality, in which the latent
representations of the risk of kidney disease capture as
much information about risk-relevant factors as
possible and are not sensitive to irrelevant
perturbations. The model removes negative transfer
by using independent encoders and honours the
heterogeneity of the distributions of thyroid, renal and
metabolic data [25, 26].

The contrastive learning element presents a self-
supervised regularization scheme on the objective of
InfoNCE that maximizes mutual information in
contrast to varying augmented views of the identical
record of a patient and minimizes its similarity to other
samples. It is possible to interpret the NT-Xent loss as
a minimum possible mutual information between
positive pairs in the latent space, which guarantee that
the learned representations are discriminative and
augmentation-invariant. The theoretical property of

6
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this property enhances generalization particularly in
the limited labelled data through imposing
smoothness and cluster consistency in the embedding
space. In a clinical sense, this guarantees that patients
with similar nephroprotective characteristics will be
placed in close quarters in representation space and
pathophysiological different ones will be well
separated. Lastly, the concept of concatenation of
features and supervised fusion step is theoretically
supported by the late fusion theory, which holds that
late fusion of high-level representations retains
modality-specific semantics, but allows cross-modal
interactions. Contrastive and supervised loss joint
optimization may be seen as a multi-objective learning
where the former (contrastive) loss is used to
determine the geometry of the latent space and the
latter (supervised) loss is used to finetune this
geometry to risk categories as per clinically useful
definitions. This twice-objective model results in
optimal calibrated decision boundaries and less
overfitting, which is theoretically guaranteed to mean
that the classifier makes use of strong, invariant
features, as opposed to accidental ones. Thus, the
algorithm can be applied to nephroprotective risk
stratification in a stable and interpretable manner in a
wide range of patients.
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4. Results and Discussion

The proposed model is tested using a retrospective
multimodal clinical data set based on tertiary care
hospitals, including those patients diagnosed with

Ornapg, / Review

thyroid disorders and renal-related complications. The
database is a combination of biochemical, metabolic,
and renal biomarkers, allowing full nephroprotective
risk modelling.

Table 3 Dataset Description

Total Patients 1350

Gender Distribution

58% Male and 42% female

Age Range

21-75 age

Risk Lables

Low Risk, Moderate Risk, High Risk (CKD/AKI)

The offered architecture is applied with the assistance
of the PyTorch deep learning framework that allows
one to design a multimodal network flexibly and train
it effectively. All clinical modalities, including
thyroid, renal, and metabolic, are encoded by a
separate lightweight multilayer perceptron (MLP)
encoder, giving the model the chance to be trained to
learn modality-specific representations of features
without causing negative transfer between
heterogeneous data sources. Contrastive learning
component is easily incorporated through the NT-Xent
loss that imposes consistency of representations across
augmented views of the same patient information. To
obtain the last risk prediction, a supervised
classification head is trained with categorical cross-

entropy loss, which is effective to align
representations learned with clinical risk labels
effectively.

The Adam optimizer and learning rate of 0.001 are

used in the training. 1 X 10™% that offers consistent
convergence when a number of loss components are
present. The batch size of 64 is chosen to compromise
between the computational efficiency and contrastive
sample diversity. The temperature parameter (t=0.5),
In the contrastive loss, (t=0.5) is used to regulate the
acuity of similarity distributions. The contrastive loss
and classification loss are weighted with using in order
to ensure the self-supervised and supervised learning
goals and A1=0.6 and A, = 0.4, respectively. The
model will be trained with 150 epochs and will be
early stopped based on validation loss to avoid
overfitting. Also, dropout rate of 0.3 is added to the
fusion layers to improve generalization of unseen
patient data.

The performance of the proposed CLFC framework is
tested with the help of a set of overall performance
measures that can be deemed to measure not only the
accuracy of classification but also the ability to
identify clinical risks. The overall correctness of
predictions is determined by measuring Accuracy
(ACC) and the reliability and completeness of risk
class identification is measured by Precision (PRE)
and Recall (REC), respectively. Fl-score (F1) is a
balanced score, it balances precision and recall and
hence it is especially preferred when there is an
imbalanced clinical data. In addition, the Area Under
the Receiver Operating Characteristic Curve (AUC) is
also used to determine how the model can distinguish

between various levels of risks of nephroprotective at

various levels of decision threshold. These
measurements taken together provide -clinically
relevant and strong evaluation of predictive
performance.

In order to prove that the proposed Contrastive
Learning with Feature Concatenation (CLFC) model
is effective, it is compared with three baseline
techniques that are widely applicable in clinical risk
prediction. The original baseline is the Logistic
Regression (LR), which is a standard statistical model
based on linear decision boundaries. The second
reference is a multimodal MLP which is free of
contrastive learning as intended to measure the effect
of the self-supervised representation learning on
performance. The third baseline is an Early Fusion
Deep Neural Network, in which all the modalities are
concatenated on the input level and learned together.
By evaluating the performance of the proposed CLFC
model against all the baseline methods, comparison
analysis shows that it is stable with respect to all
evaluation metrics. The above gains indicate the
benefits of contrastive learning in training strong and
invariant latent representations, and the success of
late-stage feature fusion in the retention of modality-
specific clinical information. These findings confirm
the suggested architectural design and prove that it is
more beneficial in terms of nephroprotective risk
stratification of patients with thyroid conditions.

Table 4 shows a detailed comparative analysis of
proposed Contrastive Learning with Feature
Concatenation (CLFC) model against three baseline
techniques,  including  Logistic = Regression,
Multimodal MLP, and Early Fusion Deep Neural
Network, on several performance indices, such as
Accuracy, Precision, Recall, F1-score, and AUC. The
findings suggest a clear indication that the proposed
CLFC model has the best performance in all the
metrics with an accuracy of 91.4, and AUC of 0.94,
showing that it has a higher capacity to accurately
identify the levels of nephroprotective risk and
efficiently separate the various levels of clinical risks.
Conversely, the conventional Logistic Regression
model has a relatively poorer performance, which is
an indication of its limited ability to capture complex
nonlinear interactions that exist in multimodal clinical
data.

Table 4: Performance Analysis

Kidneys
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ACC . REC .
Model %) PRE (%) %) F1 (%) AUC
Logistic Regression 78.6 76.9 75.4 76.1 0.81
Multimodal MLP 83.2 82.4 81.1 81.7 0.86
Early Fusion DNN 86.9 85.7 84.3 85 0.89
Proposed CLFC 914 90.6 89.8 90.2 0.94
Model-wise Accuracy Comparison
80
‘EE 60
§ 40
<
20
0

Figure.2 Model Accuracy Comparison

The visual representation of the comparison of the accuracy of the models in Figure 2 supports numerically in Table 1
by displaying a steady positive trend in predictive capabilities of simpler statistical models to more advanced deep
learning methods. The suggested CLFC model has a distinct difference with the methods of the baseline, with the stress
on the efficiency of the contrastive learning combined with the merging of the multimodal features. It is easy to see
through this visual representation that the use of self-supervised representation learning would greatly improve the
classification accuracy of nephroprotective risk prediction tasks.

Comparative Performance Across Metrics
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3
< g4
g
g
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Figure.3 Performance Evaluation
Figure 3 also demonstrates the strength of the is a sign of balanced and trustworthy predictions.
suggested methodology when it comes to various Moreover, the Figure 4 gives one a conceptual
assessment standards. Whereas there are changes in understanding of the overall model performance with
the performance of baseline models in precision, the darker intensity of the CLFC model to affirm that
recall, and Fl1-score, CLFC model has constant and it is the best choice among all the measures of
high scores across all measure of performance, which evaluation. Taken together, Table 1 and the figures that
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support it allow concluding that the proposed
architecture not only enhances predictive accuracy but
also provides better risk discrimination and

Ornapg, / Review

generalization, which proves the appropriateness of
this type of architecture to clinical decision-support
applications.

Performance Heatmap (Table 1)

Logistic Regression LN

Multimodal MLP

Model

Early Fusion DNN

86.90

Proposed CLFC 91.40

76.90

85.70

90.60

Accuracy Precision

75.40 76.10 0.81 80
0.86 60
- 40
0.89
-20
0.94
Recall F1-Score AUC

Figure 4 Performance Heatmap

4.1 Ablation Studies

The studies on ablation are carried out to provide a
systematic assessment of the role of each significant
constituent of the proposed CLFC architecture and to
gain an insight into the impact of individual modules
on the performance. The complete architecture,
consisting of modality-specific encoders, contrastive
learning, and feature concatenation, and fusion layers,
is the default model. Theoretical and empirical results
of the need of particular components are available
through performance degradation that will be found
after removing certain parts. The complete model
always attains the best accuracy, F1-score, AUC, and
forms a powerful baseline to compare the results of

deterioration is caused by the removal of the
contrastive learning module, which means that it is the
most important one in learning robust and invariant
representations. Having no contrastive regularization,
the model uses only supervised learning and becomes
more vulnerable to overfitting and lower capacity to
predict variations among patients. On the same note,
the removal of the renal encoder results in a significant
reduction in predictive power, highlighting the clinical
preeminence of renal biomarkers in the process of
nephroprotection against risk. The case of removal of
the metabolic encoder has also a negative effect on
performance albeit to a lesser degree implying that
metabolic indicators are complementary but offer

other models. The most severe performance supportive information.
Table 5: Ablation Results
Configuration ACC (%) F1 (%) AUC
Full Model (CLFC) 91.4 90.2 0.94
w/o Contrastive Learning 86.1 85 0.88
w/0 Metabolic Encoder 83.7 82.9 0.86
w/o Renal Encoder 80.4 79.6 0.83
w/o Fusion Layers 84.2 83.1 0.87
9 Kidneys Vol. 15, No. 1, 2026
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Ablation Study: Accuracy vs F1-Score
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Figure 5: Accuracy VS F1 Score
Ablation Study: AUC Comparison Across Model Variants

1.000

0.975

0.950

0.925

0.900

AUC Score

0.875

0.850

0.825

0.800

Figure 6: AUC comparison

More degradation of performance is found when
fusion layers are eliminated, with the essence of
effective modeling of cross-modal interaction. The
absence of these layers makes the model unable to
take advantage of higher-order correlations between
thyroid, renal, and metabolic representations, which
results in less strong decision boundaries. Altogether,
the findings of the ablation tests verify that every
architectural element is meaningful to the overall
performance, and the combination of contrastive
learning and multimodal fusion is critical to the
correct and trustworthy nephroprotective risk
stratification.

5. Conclusion and Future Work

This research has offered a new multimodal
comparative learning structure of CKD and AKI in
thyroid disorder patients. The proposed CLFC model
successfully exploits the combination of modality-
specific encoders and contrastive representation

10
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learning approach, feature fusion at the late stage, to
capture the complicated cross-modal correlations
among endocrine, renal, and metabolic biomarkers.
Experimental outcomes indicate that the experimental
results are significantly better than the traditional
statistical and deep learning baselines including risk
discrimination and generalization. The ablation study
shows the invaluable importance of contrastive
learning and renal biomarkers in attaining sound
performance. On the whole, the suggested framework
represents a clinically meaningful and technically
efficient strategy of early nephroprotective risk
stratification, and its future development will be aimed
at including other modalities (longitudinal laboratory
trends, medical imaging, and electronic health record
(EHR) narratives) that will further increase prediction
accuracy. Temporal contrastive learning is to be
integrated to simulate disease progression dynamics
and give an opportunity to detect CKD in its early
stages. Further, explainable AI methods will be

Vol. 15, No. 1, 2026



studied to enhance clinical interpretability and trust by

detecting contributions

by biomarkers on risk

predictions at the level of biomarkers. Potential
validation of the model on multi-center datasets, and
application to real-time settings and clinical practices
in nephrology will also be sought to determine the
soundness, equity as well as the translational influence
of the model on nephrology practice.

6. References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

11

Mohamedali, M., Maddika, S. R., Vyas, A., Iyer,
V., & Cheriyath, P. (2014). Thyroid disorders and
chronic kidney disease. International Journal of
Nephrology, 2014, Article 520281.
https://doi.org/10.1155/2014/520281

Huang, C.-W., Li, B. H., Reynolds, K., Jacobsen,
S.J., Rhee, C. M., & Sim, J. J. (2020). Association
between hypothyroidism and chronic kidney
disease observed among an adult population 55
years and older. Medicine, 99(17), ¢19569.
https://doi.org/10.1097/MD.0000000000019569
Griffin, T. P., & Griffin, M. D. (2024). Thyroid

dysfunction and chronic kidney disease:
Unravelling the connection. Mayo Clinic
Proceedings, 99(1), 7-9.

https://doi.org/10.1016/j.mayocp.2023.10.018
Devi, G. D., Behera, K. K., Mangaraj, M., &
Saharia, G. K. (2025). Unravelling the association
between renal functions and anti thyroid
peroxidase antibody levels in newly diagnosed
cases of hypothyroidism in elderly. Frontiers in
Endocrinology, 16, Article 1572675.
https://doi.org/10.3389/fendo.2025.1572675
Gopinath, B., Harris, D. C., Wall, J. R,, Kifley, A.,
& Mitchell, P. (2013). Relationship between
thyroid dysfunction and chronic kidney disease in
community-dwelling older adults. Maturitas,
75(2), 159-164.
https://doi.org/10.1016/j.maturitas.2013.03.008
Mohamedali, M., Maddika, S. R., Vyas, A., Iyer,
V., & Cheriyath, P. (2014). Thyroid disorders and
chronic kidney disease. International Journal of
Nephrology, 2014, Article 520281.
https://doi.org/10.1155/2014/520281

Deraz, H. A. A., Shawky, N. M., Amin Alallam,
A. S, & Mohamed Ateya, M. S. (2023).
Assessment of thyroid disorders and chronic
kidney disease. The Egyptian Journal of Hospital
Medicine, 92(July 2023), 5778-5783.
https://doi.org/not available (open access PDF)
Wang, X., Zhao, X., & Huang, X. (2020).
Association of subclinical thyroid dysfunction
with chronic kidney disease: A systematic review
and meta-analysis. Endocrine Research, 45(1),
41-49.
https://doi.org/10.1080/07435800.2019.1645164
Mohamedali, M., Maddika, S. R., Vyas, A., Iyer,
V., & Cheriyath, P. (2014). Thyroid disorders and
chronic kidney disease. International Journal of
Nephrology, 2014, Article 520281.
https://doi.org/10.1155/2014/520281

Wan, M., Ding, Y., Wang, Y., Jia, Y., Wu, S., Qu,
W., Xu, Y., Fu, W., Timko, M. P., Wan, L., Ying,

[11]

[13]

[14]

[15]

[16]

[19]

Kidneys

Ornapg, / Review

L.,Ye,C., Chen,R.,Li,Q.,He, Y., Xu, K., Xu, N.,
Chen, J.,, Zheng, D, Ruan, J. (2025).
Interpretable multimodal deep learning improves
postoperative risk stratification in intrahepatic
cholangiocarcinoma in multicentre cohorts. npj
Digital Medicine, Article 02282-x.
https://doi.org/10.1038/s41746-025-02282-x

Li, C., & Xu, Y. (2025). A decision support system
in precision medicine: Contrastive multimodal
learning for patient stratification. Annals of
Operations Research, 348, 579-607.
https://doi.org/10.1007/s10479-023-05545-6

Du, Q., Duan, X., Zhuang, P., Zhong, J., Liang, J.,
Chen, P., & Li, L. (2024). A multimodal deep
learning framework with contrastive learning and
multi-instance learning for endometrial cancer
preoperative  risk  stratification  [Preprint].
ResearchGate.  https://doi.org/10.21203/rs.3.1s-
3922470/v1

Liu, J., Capurro, D., Nguyen, A., & Verspoor, K.
(2023). Attention-based multimodal fusion with
contrast for robust clinical prediction in the face of
missing modalities. Journal of Biomedical
Informatics, 145(C), Article 104466.
https://doi.org/not available

Li, Z., Li, H., Ralescu, A. L., Dillman, J. R.,
Altaye, M., Cecil, K. M., Parikh, N. A., & He, L.
(2024). Joint self-supervised and supervised
contrastive learning for multimodal MRI data:
Towards predicting abnormal neurodevelopment.
Artificial Intelligence in Medicine, 157, Article
102993.
https://doi.org/10.1016/j.artmed.2024.102993

Gu, Y., Saito, K., & Ma, J. (2025). Learning
contrastive multimodal fusion with improved
modality dropout for disease detection and
prediction. arXiv.
https://arxiv.org/abs/2509.18284

Obaido, G., Mienye, 1. D., Aruleba, K., Chukwu,
C. W., Esenogho, E., & Modisane, C. (2025).
Multimodal machine learning in healthcare: A
tutorial and review [Preprint]. Preprints.org.
https://doi.org/not available

Magesh, S., Niveditha, S., Manikandan, S.,
Ramkumar, R., Dhanalakshmi, R., & Velmurugan,
S. (2025). Multimodal deep learning for
cardiovascular risk stratification: Integrating
retinal biomarkers and cardiovascular signals for
enhanced heart failure prediction. /EEE Access,
13, 83582-83592.
https://doi.org/10.1109/ACCESS.2025.3310668
Wood, D. A., Kafiabadi, S., Bana, A., Al Busaidi,
A., Guilhem, E., Lynch, J., Townend, M.,
Montazami, A., ... Sobhy, M. (2025). Deep
learning informed multimodal fusion of radiology
and histopathology images for prostate cancer risk
stratification. eBioMedicine, 101, Article 105011.
https://doi.org/10.1016/j.ebiom.2025.105011

Guo, Q., Liao, Y., Li, Z., & Liang, S. (2023).
Multi-modal  representation via contrastive
learning with attention bottleneck fusion and
attentive statistics features. Entropy, 25(10),
Article 1421. https://doi.org/10.3390/e25101421

Vol. 15, No. 1, 2026


https://doi.org/10.1155/2014/520281?referrer=grok.com
https://doi.org/10.1097/MD.0000000000019569?referrer=grok.com
https://doi.org/10.1016/j.mayocp.2023.10.018?referrer=grok.com
https://doi.org/10.3389/fendo.2025.1572675?referrer=grok.com
https://doi.org/10.1016/j.maturitas.2013.03.008?referrer=grok.com
https://doi.org/10.1155/2014/520281?referrer=grok.com
https://doi.org/not?referrer=grok.com
https://doi.org/10.1080/07435800.2019.1645164?referrer=grok.com
https://doi.org/10.1155/2014/520281?referrer=grok.com
https://doi.org/10.1038/s41746-025-02282-x?referrer=grok.com
https://doi.org/10.1007/s10479-023-05545-6?referrer=grok.com
https://doi.org/10.21203/rs.3.rs-3922470/v1?referrer=grok.com
https://doi.org/10.21203/rs.3.rs-3922470/v1?referrer=grok.com
https://doi.org/not?referrer=grok.com
https://doi.org/10.1016/j.artmed.2024.102993?referrer=grok.com
https://arxiv.org/abs/2509.18284?referrer=grok.com
https://doi.org/not?referrer=grok.com
https://doi.org/10.1109/ACCESS.2025.3310668?referrer=grok.com
https://doi.org/10.1016/j.ebiom.2025.105011?referrer=grok.com
https://doi.org/10.3390/e25101421?referrer=grok.com

[20]

(21]

[22]

(23]

(24]

[25]

[26]

12

Thapa, R., Kjaer, M. R., Mignot, E., & Zou, J.
(2026). A multimodal sleep foundation model for
disease prediction. Nature Medicine.
https://doi.org/10.1038/s41591-025-04133-4
Mignot, E., Zou, J., Thapa, R., & Kjaer, M. R.
(2026). A multimodal sleep foundation model for
disease prediction. Nature Medicine.
https://doi.org/10.1038/s41591-025-04133-4

Xia, M., Wilson, J., Goldstein, B., & Henao, R.
(2024). Contrastive learning for clinical outcome
prediction with partial data sources. Proceedings
of Machine Learning Research, 235, 54156—
54177.
https://proceedings.mlr.press/v235/xia24a.html
Ketabi, S., Wagner, M. W., Hawkins, C., Tabori,
U., Ertl-Wagner, B. B., & Khalvati, F. (2025).
Multimodal contrastive learning for enhanced
explainability in pediatric brain tumor molecular
diagnosis. Scientific Reports, 15, Article 10943.
https://doi.org/10.1038/s41598-025-94806-4
Sujith, A. V. L. N., Neelu, L., Murthy, T. K.,
Kumar, M. K., Aparna, T. D., & Mayasala, P.
(2025). Integrating bioanalysis and deep learning
ECGNet hybrid for real-time ECG pattern
recognition. Journal of Applied Bioanalysis,
11(3), 534-545.
https://doi.org/10.53555/jab.v11i3.269

Obaido, G., Mienye, 1. D., Aruleba, K., Chukwu,
C. W, Esenogho, E., & Modisane, C. (2025). A
survey of contrastive learning in medical Al:
Foundations, biomedical modalities, and future
directions [Preprint]. Preprints.org.
https://doi.org/not available

Sujith,. A. V. L. N. (2025). MOFA GAT A NOVEL
DEEP LEARNING FRAMEWORK FOR MULTI
OMICS INTEGRATION  AND  DRUG
METABOLITE = PATHWAY  PREDICTION.
Journal of Applied Bioanalysis, 728-742.

https://doi.org/10.53555/jab.v11i3.289/

Kidneys

Ornapg, / Review

Vol. 15, No. 1, 2026


https://doi.org/10.1038/s41591-025-04133-4?referrer=grok.com
https://doi.org/10.1038/s41591-025-04133-4?referrer=grok.com
https://proceedings.mlr.press/v235/xia24a.html?referrer=grok.com
https://doi.org/10.1038/s41598-025-94806-4?referrer=grok.com
https://doi.org/10.53555/jab.v11i3.269
https://doi.org/not?referrer=grok.com
https://doi.org/10.53555/jab.v11i3.289/



