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Abstract: Patients with thyroid dysfunction have a high likelihood of underdiagnosis of Chronic Kidney Disease (CKD) 

and Acute Kidney Injury (AKI) because the relationship between endocrine, renal, and metabolic biomarkers are 

complex and nonlinear. Conventional risk predictive models are unable to model these heterogeneous relationships, 

which leads to delayed nephroprotective interventions. To overcome this hurdle, this paper suggests the Contrastive 

Learning with Feature Concatenation (CLFC) model on the stratification of CKD/AKI disease at early and precise 

stages during the management of thyroid disease patients. The model uses modality-specific encoders, which learn latent 

representations using thyroid, renal, and metabolic data, but a self-supervised contrastive learning module uses the NT-

Xent loss to ensure consistency of the representations. The trained multimodal embeddings are then combined with late-

stage concatenation of features and trained with the help of supervised classification. Empirical analysis of a multimodal 

clinical dataset proves that the presented solution performs much better than the traditional machine learning and deep 

learning baselines, with higher accuracy, F1-score, and AUC. The importance of contrastive learning, and renal 

biomarkers in heightening the risk discrimination is further supported by the ablation studies. The suggested framework 

provides a clinically interpretable scalable robust solution to the assessment of CKD/AKI risk that can be used to make 

early nephroprotective decisions in thyroid-impacted populations. 

 

Keywords: Chronic Kidney Diseases, Acute Kidney Injury, Decision Support Systems, self supervised learning, 

Contrastive learning  

 

1. Introduction  

Thyroid diseases, including hypothyroidism, seem to 

predispose chronic kidney disease (CKD) to occur or 

be exacerbated, and evidence suggests that there is a 

bidirectional effect in which kidney problems can also 

influence the functioning of the thyroid. The evidence 

indicates that the early detection of these risks could 

be used to recommend nephroprotective interventions, 

such as early thyroid treatment, to possibly decelerate 

the CKD progression. Contrastive learning with 

feature concatenation shows the potential of AI to 

analyze various types of data, including medical 

images and lab results, and patient history to predict 

kidney risks in thyroid patients more accurately, 

although this field is still in its infancy and still needs 

a thorough validation [1]. Thyroid hormones help 

balance metabolism and other body functions but 

when out of balance they can add to the strain of the 

kidney. An example is that low levels of thyroid 

(hypothyroidism) are linked to slow rate of kidney 

filtration rates, which may cause CKD in the long-run. 

This association appears more apparent with older 

adults, in which untreated thyroid conditions may 

hasten the rate of kidney deterioration, but these may 

be alleviated through adequate treatment. 

Hyperthyroidism is a disease that is not closely related 

to CKD but in some instances, it accelerates already 

existing kidney issues[2]. 

Conventional testing methods are based on simple lab 

analyses such as TSH and creatinine levels which may 

overlook subtle trends. It can be possible that AI 

methods, which integrate various sources of data, 

including imaging and clinical notes, would offer a 

more comprehensive view. Such methods as 

contrastive learning assists AI to identify meaningful 

patterns using small or diverse data, whereas feature 

concatenation combines these findings to make 

improved risk predictions[3]. This may help doctors in 

prioritizing kidney safety in thyroid patients but 

further studies are required to ascertain the 
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dependability in a wider population. The AI tools 

could potentially be used to support the prevention of 

CKD because by prioritizing the risk, there could be 

interventions i.e. lifestyle changes or drugs to protect 

kidney health at earlier stages. Nevertheless, issues 

such as data privacy and explainable models should be 

overcome to instill trust in clinical practice. In general, 

there is a tendency in favor of the fact that these 

methods can help to increase personalized care, but 

they are not a standard yet[4]. 

Thyroid disorders are a huge health burden around the 

world, impacting millions, and causing multiple 

comorbidities, and chronic kidney disease (CKD) 

poses an especially important issue because of its high 

prevalence and progressive character. 

Hypothyroidism, typified by elevated thyroid-

stimulating hormone (TSH) concentrations and 

decreased triiodothyronine (T3) and thyroxine (T4) 

has been systematically associated with damaged 

renal function, lowered glomerular filtration rate 

(GFR) and amplified hazards of CKD progression. 

This two-way communication of effects- CKD can 

also interfere with the pituitary-thyroid axis and 

peripheral thyroid hormone metabolism highlight the 

necessity of combined strategies to risk stratification 

that put less emphasis on nephroprotection. 

Indicatively, in CKD patients uremia usually presents 

as low T3 syndrome and untreated hypothyroidism 

can actually aggravate the electrolyte imbalances and 

further renal deterioration, especially in the elderly 

where the anti-thyroid peroxidase (anti-TPO) 

antibodies can lead to more severe renal 

dysfunction[5,6,7]. 

The existing clinical approaches to nephroprotective 

risk assessment of thyroid disorders are based on 

univariate biomarkers, including TSH, creatinine, and 

estimated GFR (eGFR), which is yet not 

comprehensive enough to take into account the 

complex interplay between thyroid and renal systems. 

There is a separate independent positive association of 

subclinical hypothyroidism with odds of CKD, and an 

effect that is dose-dependent in large cohorts where 

hypothyroidism (TSH >4 mIU/L) increases 

susceptibility to CKD 59 times that of euthyroidism 

[8,9]. Although less common in CKD conditions, 

hyperthyroidism may cause hyperfiltration leading to 

the possible ultimate damage, and so the need to make 

holistic and multimodal assessments, integrating 

imaging, laboratory data, and clinical histories is 

essential to prevent irreparable damage to the kidney 

and to intervene at an early stage. 

With the introduction of deep learning (DL), the 

medical risk stratification has seen a revolution, 

allowing to combine heterogeneous data modalities, 

but these issues as data scarcity, modalities imbalance, 

and missing inputs remain, especially in resource-

constrained settings. Multimodal DLs, combining 

structured (e.g., lab values) and unstructured (e.g., 

ultrasound images, clinical notes) data, have been 

shown to be more successful in oncology and 

cardiovascular predictions with high levels of area 

under the curve (AUC) values due to advanced fusion 

approaches. The self-supervised method, contrastive 

learning (CL), is particularly effective at learning 

strong representations through aligning nearby 

instances and contrasting far apart ones and thus 

overfitting low-data regimes and improving cross-

modal alignment. In combination with feature 

concatenation, an easy-to-use early fusion technique, 

it has been shown that CL can be used to refine 

multimodal representations, and this has been 

demonstrated in cancer risk stratification applications 

where the approach enhances explainability and 

predictive power[10]. 

Regardless of these developments, direct applications 

to nephroprotective risk in thyroid disorders are not 

studied properly, and the models which are in 

existence do not consider the primacy of CKD 

outcomes. Frameworks Attention-based and 

transformer-integrated CL models have demonstrated 

potential in the ability to deal with missing modalities 

and give interpretable information, e.g. attention maps 

in the vicinity of tumor regions in neuroimaging, but 

must be adapted to endocrine-renal interactions. The 

self-supervised and supervised CL methods also 

provide further improvements to the feature space due 

to the complementary types of information obtained 

over modalities as seen in MRI-based 

neurodevelopment predictions and opens 

opportunities to thyroid-CKD settings where data 

variability is pronounced[11,12]. 

A new framework that uses contrastive learning and 

feature concatenation to stratify nephroprotective 

risks associated with thyroid disorders is presented in 

this paper, focusing on CKD progression. Our 

methodology seeks to enhance the predictive strength 

and interpretability by aligning multimodal features, 

such as thyroid ultrasounds, tests of kidney 

functionality and patient demographics in a single 

embedding space, which is a crucial issue that the 

existing methodologies fail to cover [14,15]. By using 

learnable tokens and contrastive losses, we deal with 

modality missingness and improve cross-modal 

fusion, which are confirmed on clinical datasets to aid 

personalized interventions[13]. 

 

2. Related Work 

Research indicates that hypothyroidism can exert 

CKD in ways such as the change in hemodynamics 

and immune responses with the results leaning 

towards dose-dependence. But longitudinal data will 

be required in order to determine directionality. The 

topic of thyroid disorders and chronic kidney disease 

(CKD) has become a growing trend in the 

endocrinology and nephrology literature due to 

epidemiological data showing bilateral relationships 

and the possibility of intervention to reduce 

nephroprotective risks. This is a literature review that 

compiles significant data of clinical and 

computational studies which explored CKD as a key 

outcome in thyroid patients. The former discusses 

epidemiological and mechanistic connections 

between thyroid malfunction and CKD and the 

development in multimodal deep learning (DL) to 

stratify risks, specifically in contrastive learning (CL) 

and feature concatenation approaches. The critical 
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reviews emphasize strengths and limitations as well as 

gaps in the methodology, which explains why 

integrated AI models are required in this area. 

 

2.1 Epidemiological and Clinical Relations 

between Thyroid disorders and CKD. 

It is reported that the prevalence of CKD has been 

increased in people with thyroid diseases especially 

hypothyroidism which has been shown to impact renal 

functionality via hormonal, hemodynamic and 

immunological ways. This two-way interaction is 

clarified by a groundbreaking review by Mohamedali 

et al. (2014), where hypothyroidism may result in a 

low level of cardiac output, a change in the activity of 

the renin-angiotensin-aldosterone system (RAAS), 

and glomerular morphologic alterations, which 

eventually lead to the loss of estimated glomerular 

filtration rate (eGFR) and electrolytes imbalance. The 

authors explain that CKD in its turn interferes with 

metabolism of thyroid hormones through the presence 

of low levels of triiodothyronine (T3) syndrome 

induced by uremia as evidenced by the prevalence 

estimates up to 20-30 percent of CKD patients having 

hypothyroidism. This review is based on cross-

sectional and cohort studies, with clinical implications 

which include the reversibility of the renal 

dysfunction with levothyroxine treatment, but there 

are limitations in the form of observational evidence 

without randomized trials to substantiate causality. 

Based on this, Huang et al. (2020) carried out a large-

scale cross-sectional study in an integrated health 

system where 378,101 adults aged 55 and above were 

involved to measure the relationship between 

hypothyroidism and CKD. They found an odds ratio 

(OR) of 1.25 (95% CI 1.21-1.29) of CKD (eGFR 4 

mIU/L) using multivariable logistic regression 

adjusted using demographics, diabetes and 

hypertension. Subgroup analysis indicated that there 

was a dose-effect, as intra-renal vasoconstriction was 

associated with increased TSH, which indicated 

mechanistic associations with links. The significant 

variety and practical nature of the cohort used in the 

study and the solid eGFR ascertainment (that needs 

many measurements) are strong, yet due to the cross-

sectional nature, no conclusions can be made about the 

temporality aspect, and no proteinuria data restricts 

full staging of CKD. The implications of these 

findings are that regular thyroid screening of elderly 

patients with CKD may help to protect the 

nephroprotective process, which is in line with the 

recommendations of the American Thyroid 

Association. Griffin and Griffin (2024) also decipher 

this relationship through a commentary, examining the 

role of thyroid hormones in renal hemodynamics and 

tubular oxygenation, and hypothyroidism may be 

increasing CKD progression through oxidative stress 

and fibrosis. They criticize the literature available as 

not sufficiently representing subclinical cases and 

suggest future longitudinal research studies to 

determine the reversible and irreversible effects of 

thyroid treatment. 

Devi et al. (2025) conducted a cross-sectional study in 

recent times, targeting the elderly patients who have 

newly developed hypothyroidism, revealing that the 

positivity of anti-TPO antibodies is an independent 

predictor of renal impairment. Out of 64 hypothyroid 

patients, the anti-TPO-positive group had 

significantly lower eGFR (p<0.05), higher creatinine, 

uric acid and ACR relative to the negatives and 

multiple regression showed the anti-TPO to be a 

predictive agent of ACR (b coefficient positive, 

p<0.05). The analysis points to immune-mediated 

processes, including the deposition of antibodies in 

renal glomeruli, as a theorist of dysfunction, which is 

a new contribution of earlier studies on autoimmune 

thyroiditis. The internal validity of the study is 

strengthened by its controlled design (age, sex, and the 

absence of confounding factors, such as diabetes), but 

the small sample size and the setting of the study (a 

hospital) restrict the applicability. This is clinically 

important to emphasize the importance of anti-TPO 

testing in risk stratification in geriatric thyroid therapy. 

Gopinath et al. (2013) also supported these 

relationships among community-dwelling elderly 

population as the study showed that hypothyroidism 

was associated with CKD using logistic models 

(adjusted OR ~1.5), and comorbidities such as 

hypertension were important modifiers [16,17,18].  

 

Table 1: Studies on coalition between Thyroid disorders and CKD 

Study 
Design and 

Sample 

Key Findings 

(OR/Prevalence) 

Mechanisms 

Analyzed 
Limitations 

Mohamedali 

et al. (2014) 

[1] 

Review (N/A) 

Hypothyroidism in 20-30% 

CKD; bidirectional via 

RAAS, low T3 

Hemodynamic, 

metabolic 

Observational 

bias, no RCTs 

Huang et al. 

(2020) [2] 

Cross-sectional 

(n=378,101) 

OR 1.25-1.59 for CKD in 

hypothyroidism; dose-

dependent 

Vasoconstriction, 

cardiac output 

No causality, 

missing 

proteinuria 

Devi et al. 

(2025)[4] 

Cross-sectional 

(n=128) 

Anti-TPO predicts ACR 

(p<0.05); lower eGFR in 

positives 

Immune complex 

deposition 

Small sample, 

hospital bias 

Gopinath et 

al. (2013) [5] 
Cohort (n~5,000) Adjusted OR ~1.5 for CKD 

Comorbidity 

interactions 

Community-

limited 

generalizability 

Wang et al. 

(2020) [8] 

Meta-analysis 

(multiple studies) 

Pooled OR 1.4-1.6 for 

subclinical hypothyroidism 

Oxidative stress, 

fibrosis 

Heterogeneity in 

definitions 
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Together, these researches examine CKD as a 

multifactorial outcome in thyroid diseases, where 

screening and treatment are likely to prevent the 

disease. Nonetheless, gaps in analytics continue to 

define causality and combination of multimodal 

information towards custom risk evaluation. 

 

2.2 Multimodal Deep Learning of Medical Risk 

Stratification. 

The use of AI and specifically, multimodal DL has 

reinvented risk prediction by integrating 

heterogeneous sources of information, which is 

disadvantageous with traditional biomarkers. The 

interpretable transformer-based postoperative risk 

model that Wan et al. (2025) designed involves the 

combination of clinical, radiomic, and pathology data 

to predict the risk of intrahepatic cholangiocarcinoma 

(ICC) in the postoperative phase. With AUCs of 

0.952-0.924 between cohorts the model uses attention 

mechanisms to fuse information, which has been 

shown biologically through transcriptomics, to be 

targeted at tumor-invasive regions. The stratification 

in this analysis is much better than the unimodal 

methods and the interpretability increases clinical trust 

but, the extrapolation to non-oncologic settings such 

as thyroid-CKD has not been studied [19, 20]. 

Li and Xu (2025) suggested a CL framework called 

ConMEHR that is a patient stratification based on 

EHRs (notes, diseases, symptoms, medications). It is 

an extension of topic modeling based on modality and 

topic-level CL that aligns the representations in a 

single space, achieving better coherence and diversity 

scores and better performance compared to baselines 

on MIMIC-III and Chinese data. Ablations validate 

CL as a strength against high-dimensionality, 

investigating its effects of explainable subgroups 

against high-dimensionality, and implications of 

thyroid-CKD to lab-text fusion include the ability to 

adapt to high-dimensionality. Du et al. (2024) 

combined the CL and multi-instance learning 

(endometrial cancer risk) and combined the features of 

MRI and pathology to preoperative stratification. 

They optimize their architecture with contrastive 

losses, resulting in high AUCs; they demonstrate 

efficiency in low-data sensations, and this may be used 

in thyroid ultrasounds and renal labs. 

Liu et al. (2023) presented an attention-based fusion 

of CL and ARMOUR, which are used to make 

predictions in clinical settings, including missing 

modalities through the use of tokens. It does better 

than baselines in multiple tasks, and cross-modal 

interactions are studied to increase robustness, and CL 

improves representations, which is highly important in 

thyroid-CKD, where missing data is very common. 

 

Table 2: Deep Learning Models 

DL Study Modalities 
Fusion/CL 

Strategy 
Performance 

Analytical 

Strengths/Limitations 

Wan et al. (2025) 

[10] 

Clinical, 

radiomics, 

pathology 

Transformer 

attention 
AUC 0.92-0.95 

Interpretable; 

oncology-specific 

Li & Xu (2025) 

[11] 
EHR texts/codes 

Modality/topic 

CL 

High 

coherence/diversit

y 

Explainable subgroups; 

no imaging 

Du et al. (2024) 

[12] 
MRI, pathology 

CL + 

concatenation 
High AUC 

Low-data efficiency; 

cancer-focused 

Liu et al. (2023) 

[13] 

Structured/unstru

ctured 

Attention + CL 

tokens 

Superior to 

baselines 

Missing modality 

handling; limited tasks 

 

These DL innovations study multimodal interactions 

to achieve better accuracy, but there are few studies on 

how to address endocrine-renal risks, and CL-feature 

concatenation models have the opportunity to 

prioritize nephroprotective demands in thyroid 

conditions. Although clinical literature confirms 

thyroid-CKD relationships, AI literature demonstrates 

an untapped potential in the multimodal integration. It 

has been concluded that CL is effective in alignment 

and robustness, however, until adaptations are 

provided, CKD results should take precedence, 

considering thyroid-specific modalities (e.g., TSH, 

ultrasounds), and explainable results are needed to 

make high-stakes decisions. Data privacy, 

generalizability, and causality should be considered in 

future work by conducting of prospective trials. 

 

3. Proposed Model 

The proposed model, titled "Contrastive Learning 

with Feature Concatenation for Nephroprotective Risk 

Stratification in Thyroid Disorders," represents an 

innovative multimodal deep neural network designed 

to integrate heterogeneous clinical data for predicting 

kidney-related risks, with a primary emphasis on 

chronic kidney disease (CKD) progression in patients 

with thyroid dysfunction. Drawing from established 

principles in contrastive learning and multimodal 

fusion, the architecture addresses the bidirectional 

interplay between thyroid hormones and renal 

function, where hypothyroidism may reduce 

glomerular filtration rate (GFR) and accelerate CKD, 

while CKD can disrupt thyroid metabolism [21, 22]. 

By leveraging modality-specific encoders, a 

contrastive learning module, and a risk prediction 

network, the model aims to provide interpretable, 

robust stratification to support nephroprotective 
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interventions, such as timely thyroid hormone 

replacement or lifestyle modifications 

 
Figure 1: Proposed Architecture 

 

The model processes three key data modalities: 

thyroid hormones (e.g., TSH, T3, T4), renal 

biomarkers (e.g., creatinine, eGFR), and metabolic 

indicators (e.g., HbA1c, blood pressure), reflecting the 

multifaceted nature of thyroid-kidney interactions. 

These inputs are fed into specialized encoders to 

extract latent features, which are then aligned via 

contrastive learning to handle data scarcity and 

variability—common challenges in medical datasets. 

The aligned features are concatenated and passed 

through fusion layers to a classifier that outputs risk 

levels (low, moderate, high) for CKD or acute kidney 

injury (AKI), optimized with supervised loss. This 

design builds on similar multimodal frameworks in 

healthcare, such as those for thyroid nodule 

classification, where image and lab data fusion via 

concatenation enhances predictive accuracy in low-

resource scenarios[23,24]. 

 

The clinical dataset is defined as : 

𝒟 = {(𝑥𝑖
𝑡, 𝑥𝑖

𝑟 , 𝑥𝑖
𝑚, 𝑦𝑖)}𝑖=1

𝑁
 

Where : 

𝑥𝑖
𝑡: 𝑇ℎ𝑦𝑟𝑜𝑖𝑑𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑠(𝑇𝑆𝐻, 𝑇3, 𝑇4); 

𝑥𝑖
𝑟𝑟𝑒𝑛𝑎𝑙𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑠(𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒, 𝑒𝐺𝐹𝑅) 

; 𝑥𝑖
𝑚: 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠(𝐻𝑏𝐴1𝑐, 𝐵𝑃) ; 

𝑦𝑖: 𝑅𝑖𝑠𝑘 𝐿𝑎𝑏𝑙𝑒 (𝑙𝑜𝑤 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑎𝑛𝑑 𝐻𝑖𝑔ℎ) 

Each modality is further processed based on specific 

encoder  

𝑧𝑖
𝑡 = 𝑓𝑡(𝑥𝑖

𝑡) 

𝑧𝑖
𝑟 = 𝑓𝑟(𝑥𝑖

𝑟) 

𝑧𝑖
𝑚 = 𝑓𝑚(𝑥𝑖

𝑚) 

in which 𝑓𝑡 , 𝑓𝑟 , 𝑓𝑚  are the MLP, CNN, Transformers 

based deep neural encoders optimized to preserve 

modality specific clinical encoders. 

 

3.1 Contrastive learning Module 

To improve generalization and inter-modal coherence, 

contrastive learning is applied using augmented views 

of encoded representations. For each encoded vector 

zi, two stochastic augmentations generate: 

(𝑧𝑖̃, 𝑧𝑖
+̃) = 𝒜(𝑧𝑖) 

These are mapped to a latent contrastive space via a 

projection head 𝑔(⋅): 

ℎ𝑖 = 𝑔(𝑧𝑖̃),  ℎ𝑖
+ = 𝑔(𝑧𝑖

+̃) 

NT-Xent Loss 

The contrastive objective minimizes the distance 

between positive pairs and maximizes separation from 

negative pairs: 

sim(ℎ𝑖, ℎ𝑗) =
ℎ𝑖

⊤ℎ𝑗

|ℎ𝑖||ℎ𝑗|
 

ℒN-Xn

= − log
exp(sim(ℎ𝑖, ℎ𝑖

+)/𝜏)

∑ o1[𝑘≠𝑖] exp(sim(ℎ𝑖, ℎ𝑘)/𝜏)2𝑁
𝑘=1

 

where: 

• sim(⋅)is cosine similarity 

• 𝜏is the temperature parameter 

This enforces clinically consistent latent 

representations across perturbations. 

 

3.2 Feature Concatenation and Fusion 

After contrastive training, embeddings from all 

modalities are concatenated: 

𝑧𝑖
concat = [𝑧𝑖

𝑡 | 𝑧𝑖
𝑟 | 𝑧𝑖

𝑚] 

The concatenated vector is passed through fusion 

layers: 

ℎ𝑖
fusion = ϕ(𝑧𝑖

concat) 
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where 𝜙(⋅)denotes fully connected fusion layers. 

3.3 Risk Prediction Network 

The fused representation is mapped to risk 

probabilities using a softmax classifier: 

𝑦𝑖̂ = Softmax(𝑊ℎ𝑖
fusion + 𝑏) 

The supervised loss is defined as: 

ℒsp = − ∑ 𝑦𝑖𝑐

𝐶

𝑐=1

lo g(𝑦𝑖𝑐̂) 

where 𝐶 = 3risk classes. 

3.4 Joint Optimization Objective 

The final training objective integrates contrastive and 

supervised losses: 

ℒttl = λ1ℒN-Xn + λ2ℒsp 

where 𝜆1, 𝜆2control representation learning vs. 

predictive accuracy. 

 

Algorithm: Contrastive Learning with Feature Concatenation for Nephroprotective Risk Stratification 

Input: Multimodal dataset 𝓓; Encoders 𝑓𝑡 , 𝑓𝑟 , 𝑓𝑚; Projection Head 𝑔(⋅); Fusion network 

ϕ(⋅); Temperature τ; Weights λ1, λ2 

Output: Predicted CDK risk level 

for 𝑒𝑎𝑐ℎ 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ ℬ ⊂ 𝒟 

   for 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 ∈ ℬ 

     { 

      Compute  𝑧𝑖
𝑡 ← 𝑓𝑡(𝑥𝑖

𝑡);  𝑧𝑖
𝑟 ← 𝑓𝑟(𝑥𝑖

𝑟);  𝑧𝑖
𝑚 ← 𝑓𝑚(𝑥𝑖

𝑚) 

      Evaluate   (𝑧𝑖̃, 𝑧𝑖
+̃) ← 𝒜(𝑧𝑖); ℎ𝑖

+ ← 𝑔(𝑧𝑖
+̃) 

     } 

   end for 

   Compute ℒN-Xn 

    for {  

         each sample 𝑖 ∈ ℬ 

         Evaluate 𝑧𝑖
concat ← [𝑧𝑖

𝑡|𝑧𝑖
𝑟|𝑧𝑖

𝑚] ;  ℎ𝑖
fusion ← ϕ(𝑧𝑖

concat);  𝑦𝑖̂ ← Softmax(ℎ𝑖
fusion) 

   end for 

    Compute ℒsp 

     ℒttl ← λ1ℒN-Xn + λ2ℒsp 

     Update model parameters 

End for 

Return risk predictions 

 

The suggested algorithm is conceptually based on 

representation learning and information-theoretic 

concepts, which will address clinically significant 

dependencies among heterogeneous biomedical 

modalities. All the modality-specific encoders are 

trained to learn nonlinear encodings of raw clinical 

variables to a latent space that retains intrinsic 

statistical structure and removes noise and modality-

specific bias. Theoretically, this relates to learning 

enough statistics of every modality, in which the latent 

representations of the risk of kidney disease capture as 

much information about risk-relevant factors as 

possible and are not sensitive to irrelevant 

perturbations. The model removes negative transfer 

by using independent encoders and honours the 

heterogeneity of the distributions of thyroid, renal and 

metabolic data [25, 26]. 

The contrastive learning element presents a self-

supervised regularization scheme on the objective of 

InfoNCE that maximizes mutual information in 

contrast to varying augmented views of the identical 

record of a patient and minimizes its similarity to other 

samples. It is possible to interpret the NT-Xent loss as 

a minimum possible mutual information between 

positive pairs in the latent space, which guarantee that 

the learned representations are discriminative and 

augmentation-invariant. The theoretical property of 

this property enhances generalization particularly in 

the limited labelled data through imposing 

smoothness and cluster consistency in the embedding 

space. In a clinical sense, this guarantees that patients 

with similar nephroprotective characteristics will be 

placed in close quarters in representation space and 

pathophysiological different ones will be well 

separated. Lastly, the concept of concatenation of 

features and supervised fusion step is theoretically 

supported by the late fusion theory, which holds that 

late fusion of high-level representations retains 

modality-specific semantics, but allows cross-modal 

interactions. Contrastive and supervised loss joint 

optimization may be seen as a multi-objective learning 

where the former (contrastive) loss is used to 

determine the geometry of the latent space and the 

latter (supervised) loss is used to finetune this 

geometry to risk categories as per clinically useful 

definitions. This twice-objective model results in 

optimal calibrated decision boundaries and less 

overfitting, which is theoretically guaranteed to mean 

that the classifier makes use of strong, invariant 

features, as opposed to accidental ones. Thus, the 

algorithm can be applied to nephroprotective risk 

stratification in a stable and interpretable manner in a 

wide range of patients. 
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4. Results and Discussion  

The proposed model is tested using a retrospective 

multimodal clinical data set based on tertiary care 

hospitals, including those patients diagnosed with 

thyroid disorders and renal-related complications. The 

database is a combination of biochemical, metabolic, 

and renal biomarkers, allowing full nephroprotective 

risk modelling. 

 

Table 3 Dataset Description 

Total Patients 1350 

Gender Distribution  58% Male and 42% female 

Age Range 21- 75 age 

Risk Lables Low Risk, Moderate Risk, High Risk (CKD/AKI) 

 

The offered architecture is applied with the assistance 

of the PyTorch deep learning framework that allows 

one to design a multimodal network flexibly and train 

it effectively. All clinical modalities, including 

thyroid, renal, and metabolic, are encoded by a 

separate lightweight multilayer perceptron (MLP) 

encoder, giving the model the chance to be trained to 

learn modality-specific representations of features 

without causing negative transfer between 

heterogeneous data sources. Contrastive learning 

component is easily incorporated through the NT-Xent 

loss that imposes consistency of representations across 

augmented views of the same patient information. To 

obtain the last risk prediction, a supervised 

classification head is trained with categorical cross-

entropy loss, which is effective to align 

representations learned with clinical risk labels 

effectively. 

The Adam optimizer and learning rate of 0.001 are 

used in the training. 1 × 10−4 that offers consistent 

convergence when a number of loss components are 

present. The batch size of 64 is chosen to compromise 

between the computational efficiency and contrastive 

sample diversity. The temperature parameter (τ=0.5), 

In the contrastive loss, (t=0.5) is used to regulate the 

acuity of similarity distributions. The contrastive loss 

and classification loss are weighted with using in order 

to ensure the self-supervised and supervised learning 

goals and λ1=0.6 and 𝜆2 = 0.4, respectively. The 

model will be trained with 150 epochs and will be 

early stopped based on validation loss to avoid 

overfitting. Also, dropout rate of 0.3 is added to the 

fusion layers to improve generalization of unseen 

patient data. 

The performance of the proposed CLFC framework is 

tested with the help of a set of overall performance 

measures that can be deemed to measure not only the 

accuracy of classification but also the ability to 

identify clinical risks. The overall correctness of 

predictions is determined by measuring Accuracy 

(ACC) and the reliability and completeness of risk 

class identification is measured by Precision (PRE) 

and Recall (REC), respectively. F1-score (F1) is a 

balanced score, it balances precision and recall and 

hence it is especially preferred when there is an 

imbalanced clinical data. In addition, the Area Under 

the Receiver Operating Characteristic Curve (AUC) is 

also used to determine how the model can distinguish 

between various levels of risks of nephroprotective at 

various levels of decision threshold. These 

measurements taken together provide clinically 

relevant and strong evaluation of predictive 

performance. 

In order to prove that the proposed Contrastive 

Learning with Feature Concatenation (CLFC) model 

is effective, it is compared with three baseline 

techniques that are widely applicable in clinical risk 

prediction. The original baseline is the Logistic 

Regression (LR), which is a standard statistical model 

based on linear decision boundaries. The second 

reference is a multimodal MLP which is free of 

contrastive learning as intended to measure the effect 

of the self-supervised representation learning on 

performance. The third baseline is an Early Fusion 

Deep Neural Network, in which all the modalities are 

concatenated on the input level and learned together. 

By evaluating the performance of the proposed CLFC 

model against all the baseline methods, comparison 

analysis shows that it is stable with respect to all 

evaluation metrics. The above gains indicate the 

benefits of contrastive learning in training strong and 

invariant latent representations, and the success of 

late-stage feature fusion in the retention of modality-

specific clinical information. These findings confirm 

the suggested architectural design and prove that it is 

more beneficial in terms of nephroprotective risk 

stratification of patients with thyroid conditions. 

 

Table 4 shows a detailed comparative analysis of 

proposed Contrastive Learning with Feature 

Concatenation (CLFC) model against three baseline 

techniques, including Logistic Regression, 

Multimodal MLP, and Early Fusion Deep Neural 

Network, on several performance indices, such as 

Accuracy, Precision, Recall, F1-score, and AUC. The 

findings suggest a clear indication that the proposed 

CLFC model has the best performance in all the 

metrics with an accuracy of 91.4, and AUC of 0.94, 

showing that it has a higher capacity to accurately 

identify the levels of nephroprotective risk and 

efficiently separate the various levels of clinical risks. 

Conversely, the conventional Logistic Regression 

model has a relatively poorer performance, which is 

an indication of its limited ability to capture complex 

nonlinear interactions that exist in multimodal clinical 

data. 

 

Table 4: Performance Analysis 
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Model 
ACC 

(%) 
PRE (%) 

REC 

(%) 
F1 (%) AUC 

Logistic Regression 78.6 76.9 75.4 76.1 0.81 

Multimodal MLP 83.2 82.4 81.1 81.7 0.86 

Early Fusion DNN 86.9 85.7 84.3 85 0.89 

Proposed CLFC 91.4 90.6 89.8 90.2 0.94 

 

 
Figure.2 Model Accuracy Comparison 

 

The visual representation of the comparison of the accuracy of the models in Figure 2 supports numerically in Table 1 

by displaying a steady positive trend in predictive capabilities of simpler statistical models to more advanced deep 

learning methods. The suggested CLFC model has a distinct difference with the methods of the baseline, with the stress 

on the efficiency of the contrastive learning combined with the merging of the multimodal features. It is easy to see 

through this visual representation that the use of self-supervised representation learning would greatly improve the 

classification accuracy of nephroprotective risk prediction tasks. 

 

 
Figure.3 Performance Evaluation 

 

Figure 3 also demonstrates the strength of the 

suggested methodology when it comes to various 

assessment standards. Whereas there are changes in 

the performance of baseline models in precision, 

recall, and F1-score, CLFC model has constant and 

high scores across all measure of performance, which 

is a sign of balanced and trustworthy predictions. 

Moreover, the Figure 4 gives one a conceptual 

understanding of the overall model performance with 

the darker intensity of the CLFC model to affirm that 

it is the best choice among all the measures of 

evaluation. Taken together, Table 1 and the figures that 
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support it allow concluding that the proposed 

architecture not only enhances predictive accuracy but 

also provides better risk discrimination and 

generalization, which proves the appropriateness of 

this type of architecture to clinical decision-support 

applications. 

 

 
Figure 4 Performance Heatmap 

 

4.1 Ablation Studies 

The studies on ablation are carried out to provide a 

systematic assessment of the role of each significant 

constituent of the proposed CLFC architecture and to 

gain an insight into the impact of individual modules 

on the performance. The complete architecture, 

consisting of modality-specific encoders, contrastive 

learning, and feature concatenation, and fusion layers, 

is the default model. Theoretical and empirical results 

of the need of particular components are available 

through performance degradation that will be found 

after removing certain parts. The complete model 

always attains the best accuracy, F1-score, AUC, and 

forms a powerful baseline to compare the results of 

other models. The most severe performance 

deterioration is caused by the removal of the 

contrastive learning module, which means that it is the 

most important one in learning robust and invariant 

representations. Having no contrastive regularization, 

the model uses only supervised learning and becomes 

more vulnerable to overfitting and lower capacity to 

predict variations among patients. On the same note, 

the removal of the renal encoder results in a significant 

reduction in predictive power, highlighting the clinical 

preeminence of renal biomarkers in the process of 

nephroprotection against risk. The case of removal of 

the metabolic encoder has also a negative effect on 

performance albeit to a lesser degree implying that 

metabolic indicators are complementary but offer 

supportive information. 

 

Table 5: Ablation Results 

Configuration ACC (%) F1 (%) AUC 

Full Model (CLFC) 91.4 90.2 0.94 

w/o Contrastive Learning 86.1 85 0.88 

w/o Metabolic Encoder 83.7 82.9 0.86 

w/o Renal Encoder 80.4 79.6 0.83 

w/o Fusion Layers 84.2 83.1 0.87 
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Figure 5: Accuracy VS F1 Score 

 
Figure 6: AUC comparison 

 

More degradation of performance is found when 

fusion layers are eliminated, with the essence of 

effective modeling of cross-modal interaction. The 

absence of these layers makes the model unable to 

take advantage of higher-order correlations between 

thyroid, renal, and metabolic representations, which 

results in less strong decision boundaries. Altogether, 

the findings of the ablation tests verify that every 

architectural element is meaningful to the overall 

performance, and the combination of contrastive 

learning and multimodal fusion is critical to the 

correct and trustworthy nephroprotective risk 

stratification. 

 

5. Conclusion and Future Work 

This research has offered a new multimodal 

comparative learning structure of CKD and AKI in 

thyroid disorder patients. The proposed CLFC model 

successfully exploits the combination of modality-

specific encoders and contrastive representation 

learning approach, feature fusion at the late stage, to 

capture the complicated cross-modal correlations 

among endocrine, renal, and metabolic biomarkers. 

Experimental outcomes indicate that the experimental 

results are significantly better than the traditional 

statistical and deep learning baselines including risk 

discrimination and generalization. The ablation study 

shows the invaluable importance of contrastive 

learning and renal biomarkers in attaining sound 

performance. On the whole, the suggested framework 

represents a clinically meaningful and technically 

efficient strategy of early nephroprotective risk 

stratification, and its future development will be aimed 

at including other modalities (longitudinal laboratory 

trends, medical imaging, and electronic health record 

(EHR) narratives) that will further increase prediction 

accuracy. Temporal contrastive learning is to be 

integrated to simulate disease progression dynamics 

and give an opportunity to detect CKD in its early 

stages. Further, explainable AI methods will be 
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studied to enhance clinical interpretability and trust by 

detecting contributions by biomarkers on risk 

predictions at the level of biomarkers. Potential 

validation of the model on multi-center datasets, and 

application to real-time settings and clinical practices 

in nephrology will also be sought to determine the 

soundness, equity as well as the translational influence 

of the model on nephrology practice. 

 

6. References 

[1] Mohamedali, M., Maddika, S. R., Vyas, A., Iyer, 

V., & Cheriyath, P. (2014). Thyroid disorders and 

chronic kidney disease. International Journal of 

Nephrology, 2014, Article 520281. 

https://doi.org/10.1155/2014/520281  

[2] Huang, C.-W., Li, B. H., Reynolds, K., Jacobsen, 

S. J., Rhee, C. M., & Sim, J. J. (2020). Association 

between hypothyroidism and chronic kidney 

disease observed among an adult population 55 

years and older. Medicine, 99(17), e19569. 

https://doi.org/10.1097/MD.0000000000019569  

[3] Griffin, T. P., & Griffin, M. D. (2024). Thyroid 

dysfunction and chronic kidney disease: 

Unravelling the connection. Mayo Clinic 

Proceedings, 99(1), 7–9. 

https://doi.org/10.1016/j.mayocp.2023.10.018  

[4] Devi, G. D., Behera, K. K., Mangaraj, M., & 

Saharia, G. K. (2025). Unravelling the association 

between renal functions and anti thyroid 

peroxidase antibody levels in newly diagnosed 

cases of hypothyroidism in elderly. Frontiers in 

Endocrinology, 16, Article 1572675. 

https://doi.org/10.3389/fendo.2025.1572675  

[5] Gopinath, B., Harris, D. C., Wall, J. R., Kifley, A., 

& Mitchell, P. (2013). Relationship between 

thyroid dysfunction and chronic kidney disease in 

community-dwelling older adults. Maturitas, 

75(2), 159–164. 

https://doi.org/10.1016/j.maturitas.2013.03.008  

[6] Mohamedali, M., Maddika, S. R., Vyas, A., Iyer, 

V., & Cheriyath, P. (2014). Thyroid disorders and 

chronic kidney disease. International Journal of 

Nephrology, 2014, Article 520281. 

https://doi.org/10.1155/2014/520281  

[7] Deraz, H. A. A., Shawky, N. M., Amin Alallam, 

A. S., & Mohamed Ateya, M. S. (2023). 

Assessment of thyroid disorders and chronic 

kidney disease. The Egyptian Journal of Hospital 

Medicine, 92(July 2023), 5778–5783. 

https://doi.org/not available (open access PDF)  

[8] Wang, X., Zhao, X., & Huang, X. (2020). 

Association of subclinical thyroid dysfunction 

with chronic kidney disease: A systematic review 

and meta-analysis. Endocrine Research, 45(1), 

41–49. 

https://doi.org/10.1080/07435800.2019.1645164  

[9] Mohamedali, M., Maddika, S. R., Vyas, A., Iyer, 

V., & Cheriyath, P. (2014). Thyroid disorders and 

chronic kidney disease. International Journal of 

Nephrology, 2014, Article 520281. 

https://doi.org/10.1155/2014/520281  

[10] Wan, M., Ding, Y., Wang, Y., Jia, Y., Wu, S., Qu, 

W., Xu, Y., Fu, W., Timko, M. P., Wan, L., Ying, 

L., Ye, C., Chen, R., Li, Q., He, Y., Xu, K., Xu, N., 

Chen, J., Zheng, D., ... Ruan, J. (2025). 

Interpretable multimodal deep learning improves 

postoperative risk stratification in intrahepatic 

cholangiocarcinoma in multicentre cohorts. npj 

Digital Medicine, Article 02282-x. 

https://doi.org/10.1038/s41746-025-02282-x  

[11] Li, C., & Xu, Y. (2025). A decision support system 

in precision medicine: Contrastive multimodal 

learning for patient stratification. Annals of 

Operations Research, 348, 579–607. 

https://doi.org/10.1007/s10479-023-05545-6  

[12] Du, Q., Duan, X., Zhuang, P., Zhong, J., Liang, J., 

Chen, P., & Li, L. (2024). A multimodal deep 

learning framework with contrastive learning and 

multi-instance learning for endometrial cancer 

preoperative risk stratification [Preprint]. 

ResearchGate. https://doi.org/10.21203/rs.3.rs-

3922470/v1  

[13] Liu, J., Capurro, D., Nguyen, A., & Verspoor, K. 

(2023). Attention-based multimodal fusion with 

contrast for robust clinical prediction in the face of 

missing modalities. Journal of Biomedical 

Informatics, 145(C), Article 104466. 

https://doi.org/not available  

[14] Li, Z., Li, H., Ralescu, A. L., Dillman, J. R., 

Altaye, M., Cecil, K. M., Parikh, N. A., & He, L. 

(2024). Joint self-supervised and supervised 

contrastive learning for multimodal MRI data: 

Towards predicting abnormal neurodevelopment. 

Artificial Intelligence in Medicine, 157, Article 

102993. 

https://doi.org/10.1016/j.artmed.2024.102993  

[15] Gu, Y., Saito, K., & Ma, J. (2025). Learning 

contrastive multimodal fusion with improved 

modality dropout for disease detection and 

prediction. arXiv. 

https://arxiv.org/abs/2509.18284  

[16] Obaido, G., Mienye, I. D., Aruleba, K., Chukwu, 

C. W., Esenogho, E., & Modisane, C. (2025). 

Multimodal machine learning in healthcare: A 

tutorial and review [Preprint]. Preprints.org. 

https://doi.org/not available  

[17] Magesh, S., Niveditha, S., Manikandan, S., 

Ramkumar, R., Dhanalakshmi, R., & Velmurugan, 

S. (2025). Multimodal deep learning for 

cardiovascular risk stratification: Integrating 

retinal biomarkers and cardiovascular signals for 

enhanced heart failure prediction. IEEE Access, 

13, 83582–83592. 

https://doi.org/10.1109/ACCESS.2025.3310668  

[18] Wood, D. A., Kafiabadi, S., Bana, A., Al Busaidi, 

A., Guilhem, E., Lynch, J., Townend, M., 

Montazami, A., ... Sobhy, M. (2025). Deep 

learning informed multimodal fusion of radiology 

and histopathology images for prostate cancer risk 

stratification. eBioMedicine, 101, Article 105011. 

https://doi.org/10.1016/j.ebiom.2025.105011  

[19] Guo, Q., Liao, Y., Li, Z., & Liang, S. (2023). 

Multi-modal representation via contrastive 

learning with attention bottleneck fusion and 

attentive statistics features. Entropy, 25(10), 

Article 1421. https://doi.org/10.3390/e25101421  

https://doi.org/10.1155/2014/520281?referrer=grok.com
https://doi.org/10.1097/MD.0000000000019569?referrer=grok.com
https://doi.org/10.1016/j.mayocp.2023.10.018?referrer=grok.com
https://doi.org/10.3389/fendo.2025.1572675?referrer=grok.com
https://doi.org/10.1016/j.maturitas.2013.03.008?referrer=grok.com
https://doi.org/10.1155/2014/520281?referrer=grok.com
https://doi.org/not?referrer=grok.com
https://doi.org/10.1080/07435800.2019.1645164?referrer=grok.com
https://doi.org/10.1155/2014/520281?referrer=grok.com
https://doi.org/10.1038/s41746-025-02282-x?referrer=grok.com
https://doi.org/10.1007/s10479-023-05545-6?referrer=grok.com
https://doi.org/10.21203/rs.3.rs-3922470/v1?referrer=grok.com
https://doi.org/10.21203/rs.3.rs-3922470/v1?referrer=grok.com
https://doi.org/not?referrer=grok.com
https://doi.org/10.1016/j.artmed.2024.102993?referrer=grok.com
https://arxiv.org/abs/2509.18284?referrer=grok.com
https://doi.org/not?referrer=grok.com
https://doi.org/10.1109/ACCESS.2025.3310668?referrer=grok.com
https://doi.org/10.1016/j.ebiom.2025.105011?referrer=grok.com
https://doi.org/10.3390/e25101421?referrer=grok.com


Огляд / Review 

12 Kidneys Vol. 15, No. 1, 2026 

[20] Thapa, R., Kjaer, M. R., Mignot, E., & Zou, J. 

(2026). A multimodal sleep foundation model for 

disease prediction. Nature Medicine. 

https://doi.org/10.1038/s41591-025-04133-4  

[21] Mignot, E., Zou, J., Thapa, R., & Kjaer, M. R. 

(2026). A multimodal sleep foundation model for 

disease prediction. Nature Medicine. 

https://doi.org/10.1038/s41591-025-04133-4  

[22] Xia, M., Wilson, J., Goldstein, B., & Henao, R. 

(2024). Contrastive learning for clinical outcome 

prediction with partial data sources. Proceedings 

of Machine Learning Research, 235, 54156–

54177. 

https://proceedings.mlr.press/v235/xia24a.html  

[23] Ketabi, S., Wagner, M. W., Hawkins, C., Tabori, 

U., Ertl-Wagner, B. B., & Khalvati, F. (2025). 

Multimodal contrastive learning for enhanced 

explainability in pediatric brain tumor molecular 

diagnosis. Scientific Reports, 15, Article 10943. 

https://doi.org/10.1038/s41598-025-94806-4  

[24]  Sujith, A. V. L. N., Neelu, L., Murthy, T. K., 

Kumar, M. K., Aparna, T. D., & Mayasala, P. 

(2025). Integrating bioanalysis and deep learning 

ECGNet hybrid for real-time ECG pattern 

recognition. Journal of Applied Bioanalysis, 

11(3), 534–545. 

https://doi.org/10.53555/jab.v11i3.269 

 

[25]  Obaido, G., Mienye, I. D., Aruleba, K., Chukwu, 

C. W., Esenogho, E., & Modisane, C. (2025). A 

survey of contrastive learning in medical AI: 

Foundations, biomedical modalities, and future 

directions [Preprint]. Preprints.org. 

https://doi.org/not available  

[26] Sujith,. A. V. L. N. (2025). MOFA GAT A NOVEL 

DEEP LEARNING FRAMEWORK FOR MULTI 

OMICS INTEGRATION AND DRUG 

METABOLITE PATHWAY PREDICTION. 

Journal of Applied Bioanalysis, 728–742. 

https://doi.org/10.53555/jab.v11i3.289/ 

 

https://doi.org/10.1038/s41591-025-04133-4?referrer=grok.com
https://doi.org/10.1038/s41591-025-04133-4?referrer=grok.com
https://proceedings.mlr.press/v235/xia24a.html?referrer=grok.com
https://doi.org/10.1038/s41598-025-94806-4?referrer=grok.com
https://doi.org/10.53555/jab.v11i3.269
https://doi.org/not?referrer=grok.com
https://doi.org/10.53555/jab.v11i3.289/



