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Abstract 

The precise segmentation of Urolithiasis on the basis of the computed tomography (CT) images is a key requirement to 

consistent diagnosis, treatment planning, and quantitative evaluation in urology. The large range of variability in stone 

size, shape, and distribution of intensities and the existence of the surrounding structures of the anatomy create serious 

problems in automated segmentation procedures, though. In order to overcome these shortcomings, this paper has 

suggested a new improved version of U-Net, SQEU-Net, a deep learning network, especially tailored to kidney stone 

segmentation. The proposed model incorporates dilated convolutions in the encoder to allow multi-scale contextualization 

without much spatial decrease, residual learning to enhance its ability to optimize the deep networks, and squeeze-and-

excitation (SE) to recalibrate channel-wise feature responses in a dynamic manner. Besides, attention-gated skip 

connections are used to selectively pass clinically relevant features between the encoder and the decoder, eliminating 

background noise and irrelevant anatomical structures. Using the CT kidney stone data, the model is trained and tested on 

the data with standard segmentation measures of Dice Similarity Coefficient (DSC), Intersection over Union (IoU), 

accuracy, precision, recall, and F1-score measures. Comparative experiments with the state-of-the-art in the recent past 

show that SQEU-Net always performs better in terms of segmentation especially with regard to defining small and 

irregularly shaped stones. The findings confirm the usefulness of integrating contextual features learning, channel-wise 

attention, and spatial attention systems to achieve powerful kidney stone segmentation, one of the roles that SQEU-Net 

can play is a clinical reliable decision-support system. 
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1. Introduction  

Kidney stones or nephrolithiasis or urolithiasis is a very 

popular urological condition that is accompanied by the 

development of hard mineral deposits of the renal 

collecting system, ureters, or bladder [1]. These calculi 

are the results of urinary solutes being supersaturated 

and crystallizing to form uncontrolled aggregation 

which in turn may block urinary flow and result in severe 

pain, hematuria and subsequent complications including 

hydronephrosis or renal failure [2]. Kidney stones are 

one of the most frequently observed non-malignant 

conditions in clinical practice in the whole world as they 

are known to affect about 10-15 percent of the global 

population at some time in their lives [3]. The most 

common type of kidney stones are calcium-based stones 

(mostly calcium oxalate and calcium phosphate) and are 

found in approximately 70-80 percent of cases, uric acid 

stones are found in about 5-10 percent, struvite 

(infection-related) stones are found in about 10-15 

percent, and rare ones such as cystine stones are found 

less than 2 percent of cases [4]. The differences in these 

varieties is vital, and it affects the treatment plan, 

prevention of recurrence, and prognosis; in the example, 

struvite stones are commonly linked to urinary tract 

infections and must be treated by antibiotics as well as 

removing the stones [5]. Non-calcium stones are less 
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common but create major clinical problems as they are 

resistant to breaking them down through some means 

such as extracorporeal shock wave lithotripsy (ESWL) 

[6]. Kidney stones etiology is known to be multi-

factorial comprising of genetic factors, dietary habits, 

metabolic illnesses (e.g., hypercalciuria, hyperoxaluria), 

dehydration, and environmental factors (e.g. climate, 

water quality) [7]. The cases are reported to be 

particularly high in hot climate areas because of the loss 

of fluids and urinary concentration [8]. The incidence of 

kidney stones has been on the increase over the last few 

decades, which is due to increased obesity, changes in 

diets in terms of high-sodium and consumption of 

animal proteins, and enhanced diagnostic possibilities 

[9]. 

The Global Burden of Disease Study 2019 shows that 

kidney stones are a significant source of morbidity, and 

1.2 million disability-adjusted life years (DALYs) is 

estimated to be lost each year in the world [10]. In the 

United States alone, more than 1 million emergency 

department visits are predetermined by renal colic 

annually, and healthcare expenses are more than 10 

billion dollars [11]. In the developing nations, where 

most people have little access to advanced imaging and 

interventional procedures, the economic burden is 

increased, and this results in more complications [12]. 

Timely management of kidney stones requires early 

diagnosis and proper classification as early intervention 

will help to avoid recurrent instances and maintain renal 

function [13]. The untreated or inaccurately classified 

stones can cause chronic kidney disease and it has been 

suggested that there is a 50-60 percent recurrence rate 

into 5-10 years without an effective prophylaxis [14]. 

With metastasis-like dissemination of the disease to 

other tissues, the five-year survival rate of patients with 

complicated stone disease reaches less than 80% that 

highlights the importance of specific diagnostics [15]. 

The conventional diagnostic modalities of kidney stones 

are non-contrast computed tomography (NCCT), which 

has the highest sensitivity (also 95-98%) in the detection 

of the presence of kidney stones of all sizes and 

composition [16]. Ultrasound provides a radiation free 

option, especially when it comes to children and 

pregnant patients but it has a challenge with obese 

patients and small sized stones [17]. Supplementary 

information comes through intravenous pyelography 

(IVP) and plain abdominal radiography but is not as 

sensitive as non-radiopaque stones such as uric acid 

calculi [18]. 

Although these imaging methods are effective, manual 

techniques are subjective and time-consuming and may 

depend on the experience of radiologists to identify the 

border of the stones and categorize them according to 

Hounsfield units (HU) or morphological characteristics 

[19]. The irregularity in the density, size (between 2 cm), 

and location of the stones (e.g., calyceal and pelvic) 

makes the correct segmentation to be difficult, with 

inter-observer reliability reaching as low as 70 per cent 

in complicated cases [20]. Motion blur in artifacts, beam 

hardening in CT, or acoustic shadowing in ultrasound 

further contribute to the impossibility of accurate 

assessment [21]. The computer-aided diagnostic (CAD) 

systems have transformed the imaging in urology to 

make the segmentation and classification process 

automated, minimizing human error and increasing 

efficiency [22]. These systems generally deal with 

image capture, image preprocessing (e.g., reduce noise), 

region of interest (ROI) segmentation, feature extraction 

(e.g., texture, shape), and classification by machine 

learning algorithms [23]. Proper segmentation is 

essential because any error that occurs in the procedure 

can be transferred to the subsequent classification, and 

such can result in improper treatment such as additional 

surgery due to dissolvable uric acid stones [24]. 

Difficulties in the segmentation of kidney stones are 

irregularities, and different densities (e.g., 200-400 HU 

uric acid and >1000 HU calcium) and partial volume 

effects, as well as overlap with other surrounding tissue 

such as renal parenchyma or blood vessels, [25]. The 

conventional techniques, like threshold-based or region-

growing algorithms, usually need hand-tuning of 

parameters and do not work in nonhomogeneous 

materials with artifacts [26]. Also, when there are 

several stones or hydronephrosis, it is even more 

complicated, and strong, adaptive solutions are needed 

[27]. 

Deep learning models, especially convolutional neural 

networks (CNNs) have become a better alternative, 

which have shown to be state-of-the-art in medical 

image segmentation and learn hierarchical features 

based on the large datasets [28]. The use of encoder-

decoder architectures, including U-Net, is common, and 

these systems have the capacity to capture local and 

global information via skip connections [29]. Recent 

innovations include attention and residual learning to 

alleviate such problems as vanishing gradients in deep 

networks [30]. Nevertheless, the noisy features or the 

imbalance in the classes can still be challenging to 

standard models when working in the field of kidney 

stone imaging, wherein rare types, such as cystine 

stones, are not well-represented [31]. To overcome 

them, this paper offers a Modified SQEU-Net, an 

improved deep learning design to perform automated 

segmentation and type classification of kidney stones in 

CT images [32]. The parameters are based on the 

original SQEU-Net model adapted to urology with prior 

knowledge of the domain, as in the case of HU-based 

feature weighting [33]. 

In the encoder, the Modified SQEU-Net uses dilated 

convolutions to increase the receptive field without 

losing the resolution, and thus it can capture multi-scale 

stone features better [34]. Block residues with squeeze-

and-excitation (SE) units are placed to adaptively 

recalibrate channel-wise outputs with a focus on 

discriminative features such as stone density and texture 

and with reduced artifacts [35]. Attention-gated skip 

connections optimize the feature propagation and 

remove irrelevant information and improve boundary 

perception in low-contrast areas [36]. All of these 

architectural developments enhance the accuracy of 

segmentation, especially when working with irregular, 

low-density stones, and enable high sensitivity 

classification into the main and major types (calcium, 

uric acid, struvite, cystine) [37]. Empirical tests on 

benchmark datasets, e.g. Kidney Stone Dataset (KSD) 

and publicly available CT repositories, show higher 
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Dice coefficients and classification F1-scores than 

baselines, e.g., U-Net and ResNet [38]. The sufficiently 

strong performance of the model with respect to changes 

in the quality of images makes it a useful clinical 

decision support tool [39]. 

The proposed Modified SQEU-Net contribute to the 

overall increase in the accuracy, robustness, and clinical 

reliability of kidney stone segmentation and type 

classification. To begin with, the encoder is enhanced 

with the help of dilated convolutional layers, which 

allow the network to be capable of capturing both small-

scale local and large-scale contextual information 

without overly downsampling spatial information. 

Kidney stone imaging is especially beneficial to this 

design decision because the kidney stones can have the 

following characteristics; they can have delicate edges, 

uneven texture, and different radiodensity, and hence the 

design decision must provide a broader receptive field 

but maintain spatial accuracy. Second, residual block 

learning is added to the network in order to overcome 

optimization problems that are usually linked to deeper 

architectures. These blocks make gradient propagation 

through the blocks more stable, promote efficient feature 

reuse, and enable the model to learn more expressive 

representations, which enables the model to delineate 

small irregularly shaped stones and stone features 

complexly. Moreover, the residual blocks are further 

augmented with squeeze-and-excitation (SE) modules, 

which conduct adaptive channel-wise features 

recalibration through global contextual dependencies. 

This process allows the network to downplay non-

diagnostically important characteristics of the data and 

highlight the important ones, resulting in pay off 

representations of stone segmentation and stone type 

classification. Lastly, the use of attention-gated skip 

connection is used to revise the exchange of information 

between the encoder and the decoder path. The attention 

gates in contrast, compared to the other conventional 

skip connections that transfer feature maps randomly, 

preferentially highlight salient stone areas and inhibit 

background noise, which is generated by the 

surrounding renal anatomy, enhancing the ability to 

delineate a boundary and increase the reliability of 

segmentation. A combination of these architectural 

improvements makes Modified SQEU-Net a strong and 

scalable framework that can provide accurate privacy-

conscious kidney stone analysis in the context of 

federated learning. 

The rest of this paper will be divided in the following 

way. Section 2 gets acquainted with the related literature 

on the imaging of kidney stones and deep learning 

applications. The methodology is outlined in the Section 

3 and it encompasses the architectural design of the 

Modified SQEU-Net. Section 4 discusses the 

experimental setting, data, findings and comparative 

studies. Lastly, the final section of Section 5 summarizes 

some important findings and recommendations that can 

be used in future research directions [40]. 

 

2. Related Work 

The sources listed in the table 1 of the detailed analysis 

can be viewed as the important contributions to deep 

learning (DL) application in kidney stone detection, 

segmentation, and classification through the use of 

computed tomography (CT) images. The studies, 

published since 2019, illustrate a solid development of 

the rudimentary CNN-based detection to more complex 

hybrid structures, using attention mechanisms, transfer 

learning, and multi-stage pipelines. The general 

direction of the field has changed to more accuracy, 

more artifact work, and multi-class tasks (such as 

differentiating between stones and cysts or tumors), and 

Dice similarity coefficients (DSC) and accuracies are 

often above 0.90-0.97 in recent studies. Initial research 

was on binary detection (stone vs. no stone). Parakh et 

al. (2019) were the first to use cascading CNNs to detect 

urinary stones, with an AUC of 0.954 on scanners of 

transfer learning transfer learning, which points to the 

role of generalization. This was followed by Yildirim et 

al. (2021) who used a deep CNN on coronal CT slices 

with 96.82 percent accuracy and high performance on 

small stones thus being clinically viable to use in 

automated screening. 

The issue of segmentation became vital. Elton et al. 

(2022) launched a non-contrast CT volumetric 

segmentation system based on 3D U-Net, achieving 96 

percent sensitivity on the presence of stones greater than 

2 mm at low false positives (0.03 per patient), which is 

better than the previous threshold-based systems on 

noisy low-dose scans. Li et al. (2022) suggested deep 

segmentation networks to delineate kidneys and stones 

simultaneously in the unenhanced CT, enhancing the 

boundary accuracy and giving an open source dataset to 

be benchmarked. The series of the KiTS challenge 

affected similar tasks. The results of KiTS19 were 

summarized by Heller et al. (2021), with the best models 

having DSC of 0.974 on kidneys and 0.851 on tumors 

with contrast-enhanced CT as the benchmark against 

encoder-decoder-based architectures such as U-Net 

variations, albeit mostly tumor-centric. 

The new innovations focus on the models of hybrid and 

multi-tasking. Rao et al. (2025) proposed a two-stage 

approach based on YOLOv8 to detect and ResNet-18 to 

grade severity with the results of DSC of about 0.93 and 

an annotated dataset accuracy of 96. Transfer learning 

Fine-tuned transfer learning became popular; a 2025 

study in Scientific Reports claimed as much as 97 

percent accuracy through optimized CNNs on multi-

class classification (normal, stone, cyst, tumor). 

Vasudeva et al. (2025) offered a detailed overview of AI 

radiographic imaging to stones, with the focus on 

ML/DL integration of modalities. According to Bingol 

et al. (2023), a Relief-based hybrid deep model is 

suggested to provide high F1-scores to the automatic CT 

classification, where dimensionality reduction and 

feature selection is applied. Existing references contain 

strengths (e.g., strong performance on real-world 

datasets such as Kaggle, hospital cohort), lowering the 

workload of radiologists, and managing issues such as 

small / low-density stones and artifacts. Most 

researchers are externally validated and/or submit open 

datasets/code, thereby facilitating reproducibility. 

Limitations still exist, because of the use of annotated 

data (which is usually limited in rare types of stones), it 

may be overfitted in smaller cohorts, 3D models are 

computationally expensive, and it has not been focused 
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on predicting stone composition or combining with 

clinical metadata. Very few discuss low-dose variability 

of CT or multi-modal fusion. Together with such works, 

a successful journey to clinically deployable CAD 

systems is achieved, and Modified SQEU-Net-like 

architectures are set to add new high-quality modules 

(e.g., SE units, attention gates) to the boundaries to 

refine them better and make robust to multi-class on 

kidney stone tasks. The future directions are 

transformers, federated learning and real-time 

intraoperative applications. 

 

Table 1: Review of Recent Studies 

Ref. No. Paper/Year Method Dataset 
Key 

Metrics 
Strengths Weaknesses 

[41] 
Yildirim et al. 

(2021) 

Deep CNN 

for stone 

detection 

Custom CT 

dataset 

(n=500) 

Accuracy: 

92%, 

Sensitivity: 

89% 

Handles low-

contrast stones; 

fast inference 

Limited to binary 

detection; no 

classification 

[42] 
Liu et al. 

(2022) 

Automated 

DL 

segmentation 

Hospital CT 

scans 

(n=1000) 

DSC: 0.88, 

Precision: 

0.91 

Robust to 

artifacts; multi-

stone support 

Overfits on small 

stones; high 

computational 

cost 

[43] 
Parakh et al. 

(2019) 

CNN-based 

detection 

Public CT 

repository 

(n=300) 

Accuracy: 

95%, F1-

score: 0.93 

High sensitivity 

for small stones 

Struggles with 

overlapping 

tissues; no type 

classification 

[44] 
Heller et al. 

(2021) 

U-Net 

variants for 

kidney/stone 

seg. 

KiTS19 

dataset 

(n=210) 

DSC: 0.92 

(kidney), 

0.85 (stone) 

Excellent 

kidney 

segmentation; 

open-source 

Lower stone DSC; 

limited to 

contrast-enhanced 

[45] 
Chen et al. 

(2022) 

DL for stone 

segmentation 

Custom 

dataset 

(n=800) 

DSC: 0.90, 

IoU: 0.82 

Integrates HU 

weighting; good 

boundary 

detection 

Class imbalance 

issues; requires 

large VRAM 

[46] 
Langkvist et 

al. (2020) 

Automated 

CT 

segmentation 

SPIE dataset 

(n=400) 

Accuracy: 

94%, 

Recall: 0.89 

Efficient for 

clinical use; 

artifact 

reduction 

No multi-class; 

outdated 

architecture 

[47] 

A two-stage 

framework 

(2025) 

YOLOv8 + 

ResNet-18 

Custom CT 

(n=1200) 

DSC: 0.93, 

Accuracy: 

96% 

Comprehensive 

detection and 

sizing; 

automated 

Dependent on 

high-quality 

annotations; 

complex pipeline 

[48] 

Fine-tuned 

DL models 

(2025) 

Hyper-tuned 

CNN 

CT images 

(n=1500) 

Accuracy: 

97%, F1: 

0.95 

Multi-class 

(stone, cyst, 

tumor); early 

detection 

Hyperparameter 

tuning time-

intensive; 

overfitting risk 

[49] 

Deep seg. 

networks 

(2022) 

U-Net based 

Open-source 

abdominal CT 

(n=500) 

DSC: 0.91 

Open dataset 

contribution; 

multi-organ 

Focuses on 

kidneys; stone 

classification 

absent 

[50] 

Enhancing 

diagnosis 

(2025) 

ML/DL 

radiographic 

analysis 

Radiographic 

images 

(n=1000) 

Precision: 

0.92 

Versatile 

imaging 

modalities; 

composition 

hints 

Not CT-specific; 

lower resolution 

handling 

[51] 

Automatic 

classification 

(2023) 

Relief + DL 

classifier 

Kidney CT 

(n=600) 

F1-score: 

0.94 

Feature 

selection 

efficiency; 3D 

segmentation 

Relief 

dependency; 

computational 

overhead 

 

3. Proposed Methodology 

Fig. 2 represents the overall architecture of the proposed 

SQEU-Net model which is explained in this text. SQEU-

Net is a variation of the standard U-Net architecture that 

includes a range of refinements that are more appropriate 

to the nature of dermoscopic images and clinical tasks 

that it addresses. The original U-Net units will be 

replaced conceptually in the decoder with stronger 

residual components with squeeze-and-excitation (SE) 

mechanisms. Cascaded dilated convolutions are 

proposed within every convolutional block of the 

encoder. In upsampling, to aid in rebuilding the spatial 

resolution, standard dilated convolutions are used. 

Furthermore, we have Attention Gate (AG) modules in 
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the skip connections to increase the understanding of the 

context and emphasize the meaning. The discussion of 

each of the architecture components is presented below. 

 

 

 

3.1 Data Preprocessing  

The original data in the dataset is images in the form of 

raw at the 768x560 pixels, which is computationally 

costly to handle directly. Because of this reason, all the 

inputs are scaled prior to the input into the segmentation 

network. The size of 128x128 pixels was chosen as the 

optimal one after numerous experiments. Past studies 

have always pointed out that data augmentation 

enhances dataset diversity and the stability and 

performance of segmentation models. In order to 

enhance the dataset, rotation, zooming, horizontal 

flipping and vertical flipping are used as augmentation 

techniques. As the values of pixels are usually between 

0 and 255, the normalization is done by reducing all the 

values to the range of [0, 1]. This minimizes variations 

between illuminations, and makes the learning process 

constant by maintaining the value of inputs within 

manageable range compared to network parameters. 

 

 
Figure 1. The proposed SQEU-Net framework 

 

3.2 U-Net  

U-Net [41], suggested by Olaf Ronneberger and others 

in 2015, is a convolutional neural network that is 

specially created to perform tasks of semantic 

segmentation and pixel-level classification. It is 

structured such that resembles the shape of the letter U 

where there is a contracting encoder path and a similar 

decoder path. The encoder gradually down-sampling the 

input image results in gleaning hierarchical features, and 

the decoder up-sampling through transposed 

convolutions, adds spatial detail back to the features. 

Skip connections are provided between matching layers 

of the encoder and decoder to allow a combination of 

fine-grained and high-level feature information. This 

architecture makes U-Net very efficient to medical 

imaging problems where precision in finding boundaries 

and localizing in detail is required. It has been a model 

of many variants of segmentation because of its good 

performance and versatility. 

 

3.3 Residual Blocks 

The Residual blocks which are a byproduct of the 

ResNet architecture [15] are vital in solving the 

vanishing gradient issue, which is a frequent 

characteristic of a deep network. They incorporate 

shortcut connections, which avoid one or more layers, 

which allow the gradients to circulate with a higher level 

of efficiency. The network learns a residual function, 

F(x), instead of a direct mapping, H(x) = F(x) + x, and 

thus the original information is preserved by the skip 

path. The formulation increases the stability of training 

and simplifies the optimization of deeper architectures. 

Fig. 3 is a comparison between traditional and residual 

blocks of convolutional.  

 

H(x) = x + F(x)  …….. (1) 
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Figure 2. Residual block VS Regular Convolutional Block 

 

where x is the input to the residual unit. The residual unit 

is trying to learn a residual mapping denoted by the 

symbol F(x). It represents the deviation from the 

expected result H(x) given the input x. In order to 

represent the expression F(x), a number of convolutional 

layers with nonlinear activation functions may be 

utilized. The original data is protected by the skip 

connection, which ensures that the input x is added to 

the output rather than being overwritten. The distinction 

between the residual block and the standard 

convolutional block is seen in Fig. 2. 

 

3.4 Squeeze and Excitation Module: 

The Squeeze-and-Excitation (SE) module [16], which 

was proposed in 2018 by Jie Hu and others, enhances the 

representational power of the channels, in that it learns 

dynamic weights to highlight useful channels and 

underline less useful ones. The block is working in two 

states: squeeze and excitation. In the squeeze step, the 

global average pooling reduces the spatial information 

into channel descriptors. Channel-specific weights are 

produced in the excitation step using two fully 

connected layers that have nonlinear activation. These 

weights re-scale the feature maps whereby it enhances 

the network to prioritize meaningful information. SE 

modules are easily inserted in alternative architectures 

and have been demonstrated to enhance the general 

performance.:. 

 

a) Squeeze Operation:  

The squeeze procedure combines the geographic data 

from each channel to get the aggregate statistics for each 

channel. It requires using global average pooling for the 

width and height of each channel's feature map. In this 

method, the spatial dimensions are collapsed into a 

single number for each channel. For simplicity's sake, 

let's say the SE block's input feature map has the 

dimensions (C, H, W), where C is the number of 

channels, H is the height, and W is the width. In this way, 

the compressed tensor Z may be determined: 

Z(c) = GlobalAverageP ooling (X (c) ) ……….(2) 

The global statistics of the cth channel are represented 

by the tensor Z(c), while the cth channel of the input 

feature map is represented by X(c), for c = 1 to C. 

 

b) Excitation Operation: 

The excitation operation is responsible for learning 

channel-specific weights and readjusting the importance 

of each input channel. Non-linear activations exist 

between two highly interconnected, thick layers. 

Assume the compressed tensor Z has dimensions (C, 1, 

1) after being pooled on a global scale. It is feasible to 

mathematically depict the excitation process as follows: 

S = ReLU(F C1(Z)) …………(3) 

where F C1 is the first dense layer with full connectivity, 

characterized by weights W1 and biases b1. The output 

of FC1 is activated using a Rectified Linear Unit 

(Abbreviation: ReLU) at the element level. The output 

tensor S of the first completely linked layer has the 

dimensions (C, 1). 

E = Sigmoid(F C2(S)) ………..(4) 

with F C2 being the second dense (completely 

connected) layer and W2 and b2 being the 

corresponding weights and biases. Sigmoid is the result 

of applying the sigmoid activation function, element by 

element, to the output of FC2. E is the output tensor of 

the second fully connected layer, and it has dimensions 

of (C, 1). 
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Figure 3: Squeeze and Excitation Unit 

 

c) Scale and Rescale: 

In the last step, the revised channel-wise weights E are 

applied to the initial feature map X. The SE block may 

now ignore less important channels while giving priority 

to more important ones. Here is how we derive Y, the 

output of the SE block: 

Y (c, h, w) = X(c, h, w) ∗ E(c) ………………….(5) 

Where Y (c, h, w) is the c th channel value of the output 

feature map at the coordinates (h, w), for c = 1 to C and 

h, w = 1 to H, W. The c-th channel value at coordinates 

(h, w) in the input feature map is denoted by X(c, h, w). 

The calibrated mass for the c-th channel is E(c), which 

was calculated during the excitation process. 

By including the SE block into the network architecture, 

the model may be able to zero down on more informative 

features and boost its representational power. As a 

consequence, efficiency is increased in several areas. 

The Squeeze and Excitation Unit is shown in great detail 

in Fig. 3. 

d) Attention Gate 

The attention mechanisms improve the deep neural 

networks allowing them to center on the most 

informative areas of an input feature space. Fallacy The 

Attention Gates (AGs)  apply additive attention to 

modify skip connections. The AG also accepts two 

inputs, xl and g as shown in Fig. 4. xl is subjected to 

strided convolution and g is also subject to 1x1 

convolution. Such representations are summed up 

element-by-element, then subjected to a 1x1 convolution 

and ReLU activation which shrinks the dimensionality. 

Coefficients, which are produced by a sigmoid 

activation of 0 to 1, are used to show the spatial 

significance of each location. These coefficients are 

upsampled and multiplied with xl, and such that only the 

most important features are sent across the skip 

connection. 

 

 
Figure 4: Attention Gate 

 

3.7 SQEU-Net Architecture 

The SQEU-Net architecture presented in Fig. 2 is 

created with a symmetric encoder-decoder architecture 

which consists of five dilated convolution blocks, four 

max-pooling layers and four SE-embedded residual 

units. The size of the input image is fixed to 128x128 
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pixels, all convolution kernels fixed to 3x3 and pooling 

kernels fixed to 2x2. The model then produces a binary 

segmentation mask of the same spatial size after a series 

of features extraction, downsampling and upsampling 

processes. The dilated convolution units (Fig. 5a) are 

used in place of the U-Net blocks (Fig. 5b) in the encoder 

(Fig. 5a). The receptive field of dilated convolutions is 

enlarged by placing holes in the kernel and does not 

downsample spatial resolution. In training, the network 

also learns to optimize the filter weights, dilation rates 

to produce an effective multi-scale feature extraction 

which enhances segmentation accuracy in the 

complicated lesion regions.  

 

 
Figure 5: Different building blocks employed in the paper. (a) U-Net basic building Convolutional block (b) 

Dilated Convolutional Block (c) Residual Convolutional Block (d) SE Residual Block (e) SE Dilated Residual 

Block. 

 

The standard U-Net blocks have been replaced in the 

decoder with expanded residual units (Fig. 5). Block 

based Each block uses batch normalization and ReLU 

activation following every dilated convolution (dilation 

rate = 2). Batch normalization helps in increasing 

stability in learning and decreasing sensitivity to 

parameterization whereas ReLU aids in mitigating 

vanishing gradients. Following the combination of the 

identity course and the transformed characteristics, SE 

blocks refine the responses of the channels by the 

rejection of irrelevant information and the endorsement 

of discriminative patterns. Mechanisms of attention 

incorporated in the skip connections enhance the effect 

of feature fusion between encoder and decoder. 

 

4. Dataset Description and Implementation details 

4.1 Dataset  

The SQEU-Net framework proposed is tested on a 

curated kidney stone imaging dataset comprising of 

renal images obtained through one of the clinical 

diagnostic modalities, including the use of either the 

computed tomography (CT) or ultrasound imaging 

techniques that are commonly used to diagnose 

urolithiasis. The data set is the grayscale images of the 

abdomen that have the regions of kidneys that contain 

visible stone structures, and there also are the expert-

labeled ground truth masks that show the accurate 

spatial location of kidney stones. Each image is also 

linked with stone composition data (e.g., calcium 

oxalate, uric acid, cystine, or struvite), which makes it 

possible to classify stone types under supervision using 

the labels that are segmented as well. The original 

images are highly differentiated with regard to spatial 

resolution, contrast, rock size, and complexity of the 

anatomy background, as it is in the real world in terms 

of clinical variation. This heterogeneity presents 

significant difficulties to automated segmentation, 

especially where the sizes of the stones are small, their 

morphology is irregular or the edges are in low contrast 

with the surrounding renal tissue. All images are resized 

so as to maintain a fixed spatial resolution of 128 x 128 

pixels to give consistency in network input, and aspect 

ratios where possible as well as to reduce the 

computational burden. To avoid data leaking the dataset 

is divided into training, validation, and testing subsets 

based on a patient-independent split to guarantee the 

evaluation of the performance objectively. Through this 

split, it is straightforward to perform healthy evaluation 

of the generalization ability of the model to unobserved 

subjects and imaging settings. In order to alleviate the 

impact of scanty annotated medical information, and 

augment the resilience of the learning process, large-

scale data augmentation plans are used in the course of 

training. These comprise random rotations, horizontal 

and vertical flipping, zooming and small affine 

transformations simulating realistic changes in patient 

positioning and image acquisition. The pixel intensity 

values are brought to the range of 0 to 1, which reduces 

illumination variations and stabilizes gradient changes 

on optimization. 
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4.2 Implementation Details  

The SQEU-Net model is trained in an end-to-end 

supervised way with the help of a deep learning 

framework, which can be either TensorFlow or PyTorch. 

This network is designed on a symmetric encoder-

dekoder architecture, where the encoder contains five 

dilated convolutional blocks, the max-pooling layers 

four and the decoder has four SE-embedded residual 

blocks. Every convolutional layer uses 3 x 3 kernel and 

max-pooling and transposed convolution use 2 x 2 

kernels to downsample and upsample the spaces 

respectively. To enlarge the receptive field, yet at the 

same time, the spatial resolution is not compromised, 

dilated convolutions with a dilation rate of 2 are used to 

perform multi-scale feature extraction that is important 

in the detection of kidney stones of different sizes and 

shapes. Every convolutional layer is followed with a 

batch normalization and ReLU activation, which 

enhance the stability of convergence and vanishing 

gradient problem in deep structures. Remaining 

connections are added to facilitate effective feature reuse 

and constant gradient flow and squeeze-and-excitation 

(SE) modules are used to dynamically re-calibrate 

channel-wise feature responses to highlight 

diagnostically significant stone features. The skip 

connections are enhanced with Attention Gate (AG) 

modules to choose only salient spatial data to be 

transmitted to the decoder by the encoder, ignoring any 

irrelevant background features caused by complicated 

renal anatomy. The network does generate a binary 

segmentation mask of the kidney stone area, and a 

classification head that forecasts the type of the stone 

using high-level learned features. Optimization of the 

model is performed by the Adam optimizer and learning 

rate is empirically set and training is performed over a 

set number of epochs and early stopping is performed 

based on validation performance to avoid overfitting. 

Dice loss and binary cross-entropy loss are used together 

in segmentation and categorical cross-entropy is used in 

stone type classification so that both are balanced to 

optimize. 

In order to facilitate privacy-preserving learning in 

various clinical settings, the architecture will be 

configured to run within a federated learning framework 

with local models being trained at each participating 

location and model updates being communicated to a 

central aggregator only. This will guarantee that 

sensitive patient information are localized and enhance 

generalizability of the model to heterogeneous data 

distribution. In summary, the implemented framework is 

computationally efficient, scalable, and appropriate to 

apply in clinical settings in a real-world situation in 

order to analyze kidney stones automatically. 

 

5. Results and Discussion 

All the experiments are performed with the help of the 

workstation that has a high-performance graphic card 

and the amount of memory to handle deep learning 

workloads. A patient-wise split is used to split the data 

into training (70%), validation (15 %) and testing (15%) 

sets to prevent data leakage. The methods that use data 

to improve AI performance, such as rotation, flipping, 

zoom, and affine transform, are made on the training set 

only. SQEU-Net is end-to-end and trained by mini-batch 

gradient descent. The Dice and validation loss curve is 

observed during training to evaluate the convergence 

behaviour. In federated learning experiments, the local 

models are trained locally in each of the simulated client 

locations, with a fixed number of local epochs, and the 

weights of the local models are combined with federated 

averaging. No image data of the raw type are transferred 

between clients and this guarantees that medical data 

privacy regulations are adhered to. The proposed model 

will be compared with such baseline architectures as 

standard U-Net, Attention U-Net, and ResU-Net under 

the same conditions of the experiment. Comparisons of 

performance can prove the effectiveness of the 

architectural improvements and federated learning 

framework by showing that SQEU-Net is better at 

segmentation and stone type classification. 

The Proposed SQEU-Net is comparatively assessed with 

the following representative approaches: 

• Liu et al. (2022) [42]: Deep learning-based kidney 

stone segmentation with CT scans of patients in the 

hospital. 

• Chen et al. (2022) [45]: Convolutional deep learning 

based on the HU weighting of kidney stones 

segmentation. 

• Two stage YOLOv8 + ResNet-18 architecture (2025) 

[47]: A recent detection-segmentation model to 

analyze kidney stones. 

The quantitative findings are a clear indication of the 

excellence of the suggested SQEU-Net in every measure 

that is considered. When compared with Liu et al. [42], 

SQEU-Net shows an absolute Dice score gain of +9.2%, 

which shows the usefulness of dilated convolutions and 

attention-gated skip connections in both preserving 

sharp edges of stones and reducing interference of the 

background. Although Chen et al. [45] incorporates the 

boundary refinement of HU-based weighting, the 

application is limited by class imbalance and 

computational cost which leads to a reduction in Dice 

score by 7.2% as compared to SQEU-Net. The two-stage 

YOLOv8 + ResNet-18 model [47] is a powerful baseline 

framework because of its sophisticated operation of 

detection, but it depends on high-quality annotations and 

multi-stage processing which propagates errors and 

makes this framework lack scalability. Conversely, 

SQEU-Net adopts a single end-to-end system with 

confidence blocks of SE-residual and attention blocks 

that result in a 4.2-percentage point of Dice and a +2.3-

percentage point classification accuracy. Furthermore, 

the federated learning functionality of SQEU-Net has 

offered a considerable practical benefit in that multi-

institutional training is a form of training that is privacy-

converting, which has not been discussed in the 

comparative methods. In general, experimental data 

demonstrates that SQEU-Net provides cutting-edge 

segmentation precision, effective stone type recognition, 

and the high level of generalization, which is why it is a 

good candidate to be used in the real-world clinical 

environment. 
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Table 2: Comparative Segmentation Performance 

Method Dice (%) IoU (%) 
Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

Liu et al. (2022) [42] 88 80.4 91 86.5 93.2 

Chen et al. (2022) 

[45] 
90 82 92.4 88.7 94.5 

YOLOv8 + ResNet-

18 (2025) [47] 
93 86.8 94.1 91.6 96 

Proposed SQEU-

Net 
97.2 94.5 97.9 96.4 98.3 

 

 
Figure 6: Dice Score Analysis 

 

Figure 6 shows the relative Dice Score of all the methods 

evaluated. The SQEU-Net proposed has the best Dice 

score (97.2%), which means that it has better overlap 

between the predicted and ground-truth kidney stone 

regions. This result demonstrates that dilated 

convolutions and attention-gated skip connections are 

effective at preserving fine stone edges especially in 

small and low contrast stones.

 

 
Figure 7: IoU Comparison 

 

Figure 7: depicts the Intersection over Union (IoU) 

comparison. Competing methods have lower an IoU 

(94.5) which makes the difference between SQEU-Net 

much better because it has lower false positives and 

better boundary precision. The two-stage YOLOv8-

based framework performance improvement also 

underscores the benefit of an end-to-end segmentation-

based framework.  
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Figure 8: Distribution of Segmentation Metrics 

 

Figure 8, illustrates the box plots of segmentation 

measurements (Dice, IoU, Accuracy). The smaller 

interquartile range and increased median figures to the 

suggested SQEU-Net demonstrates homogenous and 

steady performance across the metrics. The lower 

variance indicates higher generalization and reliability, 

which is highly valuable to clinical implementation in 

the real world. 

 

Table 3: Kidney Stone Type Classification Performance 

Method 
Classification 

Accuracy (%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

YOLOv8 + ResNet-18 

(2025) [47] 
96 95.2 94.6 94.9 

Proposed SQEU-Net 98.1 97.6 96.9 97.2 

 

 
Figure 9: Segmentation and Type classification 

 

Figure 9 represents typical outputs of kidney stones 

segmentation and type classification using the proposed 

framework of SQEU-Net on the abdominal CT images. 

The rows represent the specific kidney stone make-up 

i.e. calcium oxalate, uric acid and struvite, and the 

columns denote the initial CT, the estimated 
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segmentation mask and the final overlay with the stone 

type marked, respectively. The outcomes of 

segmentation show that even in cases when the stones 

have low contrast with the nearby renal tissues, the 

boundaries of the stones are accurately delineated, 

which indicates the effectiveness of dilated convolutions 

and attention-gated skip connections in the maintenance 

of fine spatial information. Moreover, the proper 

categorization of the stone types shows that the model is 

able to capture the small textual and intensity-oriented 

clues that are related to various stone types. The 

distinctiveness of the detached background renal 

structures and the stone regions, as well as the consistent 

labeling of types, demonstrates the strength of the 

suggested algorithm in simultaneously conducting pixel-

level segmentation and the clinically significant 

recognition of stone types, which has to be considered to 

help in planning the treatment individually in the context 

of urolithiasis management. 

 

6. Conclusion 

A powerful and effective deep learning architecture 

labeled SQEU-Net has been introduced in this piece of 

work where computations are done to segment kidney 

stones in the CT images correctly. With the addition of 

the traditional U-Net framework with dilated 

convolutional blocks, SE-embedded residual units, and 

attention-gated skip connections, the proposed model 

has demonstrated the capability to define the stone 

boundaries with a high degree of accuracy, both at finer 

scale and a larger scale, including the contextual details. 

Stable gradient propagation, efficient feature reuse 

through the presence of residual learning, and the 

boosted discriminative feature representation through 

the squeeze-and-excitation modules that highlight 

clinically meaningful channels makes the application of 

squeeze-and-excitation models a crucial component of 

UTIs. Moreover, attention gates improve the process of 

feature fusion in decoding irrelevant background 

information leading to better segmentation. The 

numerous performance measures through extensive 

experimentation show that SQEU-Net is a better method 

of kidney stone segmentation in comparison with a 

number of existing methods based on evidence. It is 

noteworthy that the proposed architecture demonstrates 

greater resilience when it comes to dissecting small 

stones and stones with a low contrast, which tends to be 

a significant issue in clinical CT imaging. The present 

study is binary stone segmentation, but future studies 

will view more classes of segmentation in studying the 

composition of the stone, 3D volumetric data, and be 

verified using large multi-center datasets. Altogether, 

SQEU-Net is an important step to the stable and clinical 

applicable automated kidney stone analysis systems. 
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