AdocnipgHuubKa cTtartta

HINPKU §

KIDNEYS

Research Article

DOI: 10.65327/kidneys.v15i1.588

M Kishore Kumar®, A V L N Sujith®",

1Research Scholar, BEST Innovation University, Gownivaripalli, Gorantla Andhra Pradesh, India.
kishorkumar.mandapaka@gmail.com
2Professor, Department of CSE, School of Engineering, Malla Reddy University, Hyderabad, India.
Sujeeth.avin@gmail.com, Orchid ID: 0000-0003-4808-8761
*Corresponding Author: AV L N Sujith
Professor, Department of CSE, School of Engineering, Malla Reddy University, Hyderabad, India.
Email ID: Sujeeth.avin@gmail.com

Modified SQEU-Net: An Enhanced U-Net Architecture With
Federated Learning For Urolithiasis Segmentation And Type
Classification

For citation: Kidneys. 2026;15(1):01-14. Acceptance- 07/01/2025 Received- 15/10/2025
doi: 10.65327/kidneys.v15i1.588

Abstract

The precise segmentation of Urolithiasis on the basis of the computed tomography (CT) images is a key requirement to
consistent diagnosis, treatment planning, and quantitative evaluation in urology. The large range of variability in stone
size, shape, and distribution of intensities and the existence of the surrounding structures of the anatomy create serious
problems in automated segmentation procedures, though. In order to overcome these shortcomings, this paper has
suggested a new improved version of U-Net, SQEU-Net, a deep learning network, especially tailored to kidney stone
segmentation. The proposed model incorporates dilated convolutions in the encoder to allow multi-scale contextualization
without much spatial decrease, residual learning to enhance its ability to optimize the deep networks, and squeeze-and-
excitation (SE) to recalibrate channel-wise feature responses in a dynamic manner. Besides, attention-gated skip
connections are used to selectively pass clinically relevant features between the encoder and the decoder, eliminating
background noise and irrelevant anatomical structures. Using the CT kidney stone data, the model is trained and tested on
the data with standard segmentation measures of Dice Similarity Coefficient (DSC), Intersection over Union (IoU),
accuracy, precision, recall, and F1-score measures. Comparative experiments with the state-of-the-art in the recent past
show that SQEU-Net always performs better in terms of segmentation especially with regard to defining small and
irregularly shaped stones. The findings confirm the usefulness of integrating contextual features learning, channel-wise
attention, and spatial attention systems to achieve powerful kidney stone segmentation, one of the roles that SQEU-Net
can play is a clinical reliable decision-support system.

Keywords: Medical Imaging; Kidney Stones; Deep Learning; Urolithiasis; U Net.

1. Introduction

Kidney stones or nephrolithiasis or urolithiasis is a very
popular urological condition that is accompanied by the
development of hard mineral deposits of the renal
collecting system, ureters, or bladder [1]. These calculi
are the results of urinary solutes being supersaturated
and crystallizing to form uncontrolled aggregation
which in turn may block urinary flow and result in severe
pain, hematuria and subsequent complications including
hydronephrosis or renal failure [2]. Kidney stones are
one of the most frequently observed non-malignant
conditions in clinical practice in the whole world as they
are known to affect about 10-15 percent of the global

population at some time in their lives [3]. The most
common type of kidney stones are calcium-based stones
(mostly calcium oxalate and calcium phosphate) and are
found in approximately 70-80 percent of cases, uric acid
stones are found in about 5-10 percent, struvite
(infection-related) stones are found in about 10-15
percent, and rare ones such as cystine stones are found
less than 2 percent of cases [4]. The differences in these
varieties is vital, and it affects the treatment plan,
prevention of recurrence, and prognosis; in the example,
struvite stones are commonly linked to urinary tract
infections and must be treated by antibiotics as well as
removing the stones [5]. Non-calcium stones are less
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common but create major clinical problems as they are
resistant to breaking them down through some means
such as extracorporeal shock wave lithotripsy (ESWL)
[6]. Kidney stones etiology is known to be multi-
factorial comprising of genetic factors, dietary habits,
metabolic illnesses (e.g., hypercalciuria, hyperoxaluria),
dehydration, and environmental factors (e.g. climate,
water quality) [7]. The cases are reported to be
particularly high in hot climate areas because of the loss
of fluids and urinary concentration [8]. The incidence of
kidney stones has been on the increase over the last few
decades, which is due to increased obesity, changes in
diets in terms of high-sodium and consumption of
animal proteins, and enhanced diagnostic possibilities
[9].

The Global Burden of Disease Study 2019 shows that
kidney stones are a significant source of morbidity, and
1.2 million disability-adjusted life years (DALYS) is
estimated to be lost each year in the world [10]. In the
United States alone, more than 1 million emergency
department visits are predetermined by renal colic
annually, and healthcare expenses are more than 10
billion dollars [11]. In the developing nations, where
most people have little access to advanced imaging and
interventional procedures, the economic burden is
increased, and this results in more complications [12].
Timely management of kidney stones requires early
diagnosis and proper classification as early intervention
will help to avoid recurrent instances and maintain renal
function [13]. The untreated or inaccurately classified
stones can cause chronic kidney disease and it has been
suggested that there is a 50-60 percent recurrence rate
into 5-10 years without an effective prophylaxis [14].
With metastasis-like dissemination of the disease to
other tissues, the five-year survival rate of patients with
complicated stone disease reaches less than 80% that
highlights the importance of specific diagnostics [15].
The conventional diagnostic modalities of kidney stones
are non-contrast computed tomography (NCCT), which
has the highest sensitivity (also 95-98%) in the detection
of the presence of kidney stones of all sizes and
composition [16]. Ultrasound provides a radiation free
option, especially when it comes to children and
pregnant patients but it has a challenge with obese
patients and small sized stones [17]. Supplementary
information comes through intravenous pyelography
(IVP) and plain abdominal radiography but is not as
sensitive as non-radiopaque stones such as uric acid
calculi [18].

Although these imaging methods are effective, manual
techniques are subjective and time-consuming and may
depend on the experience of radiologists to identify the
border of the stones and categorize them according to
Hounsfield units (HU) or morphological characteristics
[19]. The irregularity in the density, size (between 2 cm),
and location of the stones (e.g., calyceal and pelvic)
makes the correct segmentation to be difficult, with
inter-observer reliability reaching as low as 70 per cent
in complicated cases [20]. Motion blur in artifacts, beam
hardening in CT, or acoustic shadowing in ultrasound
further contribute to the impossibility of accurate
assessment [21]. The computer-aided diagnostic (CAD)
systems have transformed the imaging in urology to
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make the segmentation and classification process
automated, minimizing human error and increasing
efficiency [22]. These systems generally deal with
image capture, image preprocessing (e.g., reduce noise),
region of interest (ROI) segmentation, feature extraction
(e.g., texture, shape), and classification by machine
learning algorithms [23]. Proper segmentation is
essential because any error that occurs in the procedure
can be transferred to the subsequent classification, and
such can result in improper treatment such as additional
surgery due to dissolvable uric acid stones [24].
Difficulties in the segmentation of kidney stones are
irregularities, and different densities (e.g., 200-400 HU
uric acid and >1000 HU calcium) and partial volume
effects, as well as overlap with other surrounding tissue
such as renal parenchyma or blood vessels, [25]. The
conventional techniques, like threshold-based or region-
growing algorithms, usually need hand-tuning of
parameters and do not work in nonhomogeneous
materials with artifacts [26]. Also, when there are
several stones or hydronephrosis, it is even more
complicated, and strong, adaptive solutions are needed
[27].

Deep learning models, especially convolutional neural
networks (CNNs) have become a better alternative,
which have shown to be state-of-the-art in medical
image segmentation and learn hierarchical features
based on the large datasets [28]. The use of encoder-
decoder architectures, including U-Net, is common, and
these systems have the capacity to capture local and
global information via skip connections [29]. Recent
innovations include attention and residual learning to
alleviate such problems as vanishing gradients in deep
networks [30]. Nevertheless, the noisy features or the
imbalance in the classes can still be challenging to
standard models when working in the field of kidney
stone imaging, wherein rare types, such as cystine
stones, are not well-represented [31]. To overcome
them, this paper offers a Modified SQEU-Net, an
improved deep learning design to perform automated
segmentation and type classification of kidney stones in
CT images [32]. The parameters are based on the
original SQEU-Net model adapted to urology with prior
knowledge of the domain, as in the case of HU-based
feature weighting [33].

In the encoder, the Modified SQEU-Net uses dilated
convolutions to increase the receptive field without
losing the resolution, and thus it can capture multi-scale
stone features better [34]. Block residues with squeeze-
and-excitation (SE) units are placed to adaptively
recalibrate channel-wise outputs with a focus on
discriminative features such as stone density and texture
and with reduced artifacts [35]. Attention-gated skip
connections optimize the feature propagation and
remove irrelevant information and improve boundary
perception in low-contrast areas [36]. All of these
architectural developments enhance the accuracy of
segmentation, especially when working with irregular,
low-density stones, and enable high sensitivity
classification into the main and major types (calcium,
uric acid, struvite, cystine) [37]. Empirical tests on
benchmark datasets, e.g. Kidney Stone Dataset (KSD)
and publicly available CT repositories, show higher
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Dice coefficients and classification Fl-scores than
baselines, e.g., U-Net and ResNet [38]. The sufficiently
strong performance of the model with respect to changes
in the quality of images makes it a useful clinical
decision support tool [39].

The proposed Modified SQEU-Net contribute to the
overall increase in the accuracy, robustness, and clinical
reliability of kidney stone segmentation and type
classification. To begin with, the encoder is enhanced
with the help of dilated convolutional layers, which
allow the network to be capable of capturing both small-
scale local and large-scale contextual information
without overly downsampling spatial information.
Kidney stone imaging is especially beneficial to this
design decision because the kidney stones can have the
following characteristics; they can have delicate edges,
uneven texture, and different radiodensity, and hence the
design decision must provide a broader receptive field
but maintain spatial accuracy. Second, residual block
learning is added to the network in order to overcome
optimization problems that are usually linked to deeper
architectures. These blocks make gradient propagation
through the blocks more stable, promote efficient feature
reuse, and enable the model to learn more expressive
representations, which enables the model to delineate
small irregularly shaped stones and stone features
complexly. Moreover, the residual blocks are further
augmented with squeeze-and-excitation (SE) modules,
which conduct adaptive channel-wise features
recalibration through global contextual dependencies.
This process allows the network to downplay non-
diagnostically important characteristics of the data and
highlight the important ones, resulting in pay off
representations of stone segmentation and stone type
classification. Lastly, the use of attention-gated skip
connection is used to revise the exchange of information
between the encoder and the decoder path. The attention
gates in contrast, compared to the other conventional
skip connections that transfer feature maps randomly,
preferentially highlight salient stone areas and inhibit
background noise, which is generated by the
surrounding renal anatomy, enhancing the ability to
delineate a boundary and increase the reliability of
segmentation. A combination of these architectural
improvements makes Modified SQEU-Net a strong and
scalable framework that can provide accurate privacy-
conscious kidney stone analysis in the context of
federated learning.

The rest of this paper will be divided in the following
way. Section 2 gets acquainted with the related literature
on the imaging of kidney stones and deep learning
applications. The methodology is outlined in the Section
3 and it encompasses the architectural design of the
Modified SQEU-Net. Section 4 discusses the
experimental setting, data, findings and comparative
studies. Lastly, the final section of Section 5 summarizes
some important findings and recommendations that can
be used in future research directions [40].

2. Related Work

The sources listed in the table 1 of the detailed analysis
can be viewed as the important contributions to deep
learning (DL) application in kidney stone detection,
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segmentation, and classification through the use of
computed tomography (CT) images. The studies,
published since 2019, illustrate a solid development of
the rudimentary CNN-based detection to more complex
hybrid structures, using attention mechanisms, transfer
learning, and multi-stage pipelines. The general
direction of the field has changed to more accuracy,
more artifact work, and multi-class tasks (such as
differentiating between stones and cysts or tumors), and
Dice similarity coefficients (DSC) and accuracies are
often above 0.90-0.97 in recent studies. Initial research
was on binary detection (stone vs. no stone). Parakh et
al. (2019) were the first to use cascading CNNss to detect
urinary stones, with an AUC of 0.954 on scanners of
transfer learning transfer learning, which points to the
role of generalization. This was followed by Yildirim et
al. (2021) who used a deep CNN on coronal CT slices
with 96.82 percent accuracy and high performance on
small stones thus being clinically viable to use in
automated screening.

The issue of segmentation became vital. Elton et al.
(2022) launched a non-contrast CT volumetric
segmentation system based on 3D U-Net, achieving 96
percent sensitivity on the presence of stones greater than
2 mm at low false positives (0.03 per patient), which is
better than the previous threshold-based systems on
noisy low-dose scans. Li et al. (2022) suggested deep
segmentation networks to delineate kidneys and stones
simultaneously in the unenhanced CT, enhancing the
boundary accuracy and giving an open source dataset to
be benchmarked. The series of the KiTS challenge
affected similar tasks. The results of KiTS19 were
summarized by Heller et al. (2021), with the best models
having DSC of 0.974 on kidneys and 0.851 on tumors
with contrast-enhanced CT as the benchmark against
encoder-decoder-based architectures such as U-Net
variations, albeit mostly tumor-centric.

The new innovations focus on the models of hybrid and
multi-tasking. Rao et al. (2025) proposed a two-stage
approach based on YOLOVS to detect and ResNet-18 to
grade severity with the results of DSC of about 0.93 and
an annotated dataset accuracy of 96. Transfer learning
Fine-tuned transfer learning became popular; a 2025
study in Scientific Reports claimed as much as 97
percent accuracy through optimized CNNs on multi-
class classification (normal, stone, cyst, tumor).
Vasudeva et al. (2025) offered a detailed overview of Al
radiographic imaging to stones, with the focus on
ML/DL integration of modalities. According to Bingol
et al. (2023), a Relief-based hybrid deep model is
suggested to provide high F1-scores to the automatic CT
classification, where dimensionality reduction and
feature selection is applied. Existing references contain
strengths (e.g., strong performance on real-world
datasets such as Kaggle, hospital cohort), lowering the
workload of radiologists, and managing issues such as
small / low-density stones and artifacts. Most
researchers are externally validated and/or submit open
datasets/code, thereby facilitating reproducibility.
Limitations still exist, because of the use of annotated
data (which is usually limited in rare types of stones), it
may be overfitted in smaller cohorts, 3D models are
computationally expensive, and it has not been focused

Vol. 15, No. 1, 2026



on predicting stone composition or combining with
clinical metadata. Very few discuss low-dose variability
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(e.g., SE units, attention gates) to the boundaries to
refine them better and make robust to multi-class on

of CT or multi-modal fusion. Together with such works, kidney stone tasks. The future directions are
a successful journey to clinically deployable CAD transformers, federated learning and real-time
systems is achieved, and Modified SQEU-Net-like intraoperative applications.
architectures are set to add new high-quality modules
Table 1: Review of Recent Studies
Ref. No. | Paper/Year | Method Dataset Key . Strengths Weaknesses
Metrics
Yildirim et al Deep CNN | Custom CT g\zc(;uracy: Handles low- | Limited to binary
[41] (2021) | for stone | dataset Sen:’itivit | contrast stones; | detection; no
detection (n=500) 899 Y* | fast inference classification
0
Liu e al Automated Hospital CT | DSC: 0.88, | Robust to ggﬁggs on slrlr;ag
[42] (2022) " | DL scans Precision: artifacts; multi- com L;tational &
segmentation | (n=1000) 0.91 stone support cos tp
. ) Struggles with
[43] Parakh et al. | CNN-based ert:)lgtor T 9Asct;ura03;1_ High sensitivity | overlapping
(2019) detection Ii Y * for small stones | tissues; no type
(n=300) score: 0.93 . .
classification
U-Net KiTS19 DSC: 0.92 | Excellent Lower stone DSC;
Heller et al. | variants for N kidney L ’
[44] (2021) kidney/stone dataset (kidney), segmentation; limited to
y (n=210) 0.85 (stone) & ’ contrast-enhanced
seg. open-source
Integrates HU .
[45] Chen et al. | DL for stone g;zts(gl DSC: 0.90, | weighting; good Ei?i:s. lmrt?(lllsiriz
(2022) segmentation (n=800) IoU: 0.82 bound?ry large VRAM
detection
Efficient for .
[46] Langkvist et é}l{tomated SPIE dataset ;&:(;uracy. clinical use; I(jli datergultl-class,
al. (2020) . (n=400) > artifact )
segmentation Recall: 0.89 . architecture
reduction
) Comprehensive | Dependent on
[47] garrzv\:/)(-)isge YOLOvVS + | Custom CT I/zfccu'ra(c).?l detection and | high-quality
ResNet-18 (n=1200) y: sizing; annotations;
(2025) 96% D
automated complex pipeline
. ) Multi-class Hyperparameter
(2025) CNN (n=1500) 0.95 ’ " | tumor);  early | intensive;
) detection overfitting risk
Deep seg. Open-source Open  dataset ll;();;l;e:. s toi)lrel
[49] networks U-Net based | abdominal CT | DSC: 0.91 contribution; YSs
(2022) (n=500) multi-organ classification
absent
Versatile
Enhancing ML/DL Radiographic Precision: imaging Not CT-specific;
[50] diagnosis radiographic | images 0.92 ’ modalities; lower resolution
(2025) analysis (n=1000) ’ composition handling
hints
Automatic Feature Relief
[51] classification Relief + DL | Kidney = CT | Fl-score: selection dependency;
(2023) classifier (n=600) 0.94 efficiency; 3D | computational
segmentation overhead

3. Proposed Methodology

Fig. 2 represents the overall architecture of the proposed
SQEU-Net model which is explained in this text. SQEU-
Net is a variation of the standard U-Net architecture that
includes a range of refinements that are more appropriate
to the nature of dermoscopic images and clinical tasks
that it addresses. The original U-Net units will be

4 Kidneys

replaced conceptually in the decoder with stronger
residual components with squeeze-and-excitation (SE)
mechanisms. Cascaded dilated convolutions are
proposed within every convolutional block of the
encoder. In upsampling, to aid in rebuilding the spatial
resolution, standard dilated convolutions are used.
Furthermore, we have Attention Gate (AG) modules in
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the skip connections to increase the understanding of the
context and emphasize the meaning. The discussion of
each of the architecture components is presented below.

3.1 Data Preprocessing

The original data in the dataset is images in the form of
raw at the 768x560 pixels, which is computationally
costly to handle directly. Because of this reason, all the
inputs are scaled prior to the input into the segmentation
network. The size of 128x128 pixels was chosen as the
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optimal one after numerous experiments. Past studies
have always pointed out that data augmentation
enhances dataset diversity and the stability and
performance of segmentation models. In order to
enhance the dataset, rotation, zooming, horizontal
flipping and vertical flipping are used as augmentation
techniques. As the values of pixels are usually between
0 and 255, the normalization is done by reducing all the
values to the range of [0, 1]. This minimizes variations
between illuminations, and makes the learning process
constant by maintaining the value of inputs within
manageable range compared to network parameters.

Y
128 x 128 x 1

L
60 x 64 x 128 |
Y
64 x 64 x 64

A4
-
()
\
32x32x128
Y
32x32x128

64 x 64 x 196

Input Image

} Maxpool 2x2

[ | Dilated Convolutional Block > Conv Transpose 2x2

l Dilated Convoutional Block [ Maxpool 2x2

D Conv Transpose 2x2
D Concatenate Block

D Conv Transpose 2x2

D AG D.2laréd Resdual Block

| SE Dilated Residual Block

D Classification Layer

Figure 1. The proposed SQEU-Net framework

3.2 U-Net

U-Net [41], suggested by Olaf Ronneberger and others
in 2015, is a convolutional neural network that is
specially created to perform tasks of semantic
segmentation and pixel-level classification. It is
structured such that resembles the shape of the letter U
where there is a contracting encoder path and a similar
decoder path. The encoder gradually down-sampling the
input image results in gleaning hierarchical features, and
the decoder up-sampling through transposed
convolutions, adds spatial detail back to the features.
Skip connections are provided between matching layers
of the encoder and decoder to allow a combination of
fine-grained and high-level feature information. This
architecture makes U-Net very efficient to medical
imaging problems where precision in finding boundaries
and localizing in detail is required. It has been a model

of many variants of segmentation because of its good
performance and versatility.

3.3 Residual Blocks

The Residual blocks which are a byproduct of the
ResNet architecture [15] are vital in solving the
vanishing gradient issue, which is a frequent
characteristic of a deep network. They incorporate
shortcut connections, which avoid one or more layers,
which allow the gradients to circulate with a higher level
of efficiency. The network learns a residual function,
F(x), instead of a direct mapping, H(x) = F(x) + x, and
thus the original information is preserved by the skip
path. The formulation increases the stability of training
and simplifies the optimization of deeper architectures.
Fig. 3 is a comparison between traditional and residual
blocks of convolutional.

Hx)=x+F(x) ... (1)

Kidneys

Vol. 15, No. 1, 2026



Outputs
A

Conv + ReLU

A

Conv + RelLU

|

Inputs

[ocnigHuubKa cratta / Research article

Qutputs

Conv + ReLU

!

Conv + RelLU

/

Inputs

Figure 2. Residual block VS Regular Convolutional Block

where x is the input to the residual unit. The residual unit
is trying to learn a residual mapping denoted by the
symbol F(x). It represents the deviation from the
expected result H(x) given the input x. In order to
represent the expression F(x), a number of convolutional
layers with nonlinear activation functions may be
utilized. The original data is protected by the skip
connection, which ensures that the input x is added to
the output rather than being overwritten. The distinction
between the residual block and the standard
convolutional block is seen in Fig. 2.

3.4 Squeeze and Excitation Module:

The Squeeze-and-Excitation (SE) module [16], which
was proposed in 2018 by Jie Hu and others, enhances the
representational power of the channels, in that it learns
dynamic weights to highlight useful channels and
underline less useful ones. The block is working in two
states: squeeze and excitation. In the squeeze step, the
global average pooling reduces the spatial information
into channel descriptors. Channel-specific weights are
produced in the excitation step using two fully
connected layers that have nonlinear activation. These
weights re-scale the feature maps whereby it enhances
the network to prioritize meaningful information. SE
modules are easily inserted in alternative architectures
and have been demonstrated to enhance the general
performance.:.

a) Squeeze Operation:

The squeeze procedure combines the geographic data
from each channel to get the aggregate statistics for each
channel. It requires using global average pooling for the
width and height of each channel's feature map. In this

Kidneys

method, the spatial dimensions are collapsed into a
single number for each channel. For simplicity's sake,
let's say the SE block's input feature map has the
dimensions (C, H, W), where C is the number of
channels, H is the height, and W is the width. In this way,
the compressed tensor Z may be determined:

Z(c) = GlobalAverageP ooling (X (c) ) (2)

The global statistics of the cth channel are represented
by the tensor Z(c), while the cth channel of the input
feature map is represented by X(c), forc =1 to C.

b) Excitation Operation:

The excitation operation is responsible for learning
channel-specific weights and readjusting the importance
of each input channel. Non-linear activations exist
between two highly interconnected, thick layers.
Assume the compressed tensor Z has dimensions (C, 1,
1) after being pooled on a global scale. It is feasible to
mathematically depict the excitation process as follows:
S =RelLU(F Cl(Z))
where F C1 is the first dense layer with full connectivity,
characterized by weights W1 and biases bl. The output
of FCI1 is activated using a Rectified Linear Unit
(Abbreviation: ReLU) at the element level. The output
tensor S of the first completely linked layer has the
dimensions (C, 1).

E = Sigmoid(F C2(S)) (4)

with F C2 being the second dense (completely
connected) layer and W2 and b2 being the
corresponding weights and biases. Sigmoid is the result
of applying the sigmoid activation function, element by
element, to the output of FC2. E is the output tensor of
the second fully connected layer, and it has dimensions
of (C, 1).
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[ocnigHuubKa cratta / Research article

’ Sigmoid

Squeeze
1x1xC/r
‘ 1x1xC/r
Excitation
1x1xC
1x1xC
Scaling

HxWxC

Figure 3: Squeeze and Excitation Unit

¢) Scale and Rescale:

In the last step, the revised channel-wise weights E are
applied to the initial feature map X. The SE block may
now ignore less important channels while giving priority
to more important ones. Here is how we derive Y, the
output of the SE block:

Yic, h w)=X(c, hyw) *E(C) ccccoveevvn e (5)
Where Y (c, h, w) is the c th channel value of the output
feature map at the coordinates (h, w), for c =1 to C and
h, w=1 to H, W. The c-th channel value at coordinates
(h, w) in the input feature map is denoted by X(c, h, w).
The calibrated mass for the c-th channel is E(c), which
was calculated during the excitation process.

By including the SE block into the network architecture,
the model may be able to zero down on more informative
features and boost its representational power. As a
consequence, efficiency is increased in several areas.
The Squeeze and Excitation Unit is shown in great detail
in Fig. 3.

d) Attention Gate

The attention mechanisms improve the deep neural
networks allowing them to center on the most
informative areas of an input feature space. Fallacy The
Attention Gates (AGs) apply additive attention to
modify skip connections. The AG also accepts two
inputs, xl and g as shown in Fig. 4. x1 is subjected to
strided convolution and g is also subject to 1x1
convolution. Such representations are summed up
element-by-element, then subjected to a 1x1 convolution
and ReLU activation which shrinks the dimensionality.
Coefficients, which are produced by a sigmoid
activation of 0 to 1, are used to show the spatial
significance of each location. These coefficients are
upsampled and multiplied with x1, and such that only the
most important features are sent across the skip
connection.

CoHg<W,

_— .
g We: 1x1 | ReLU
+ —

e yilxl ——>

— > W, lxl
CXHXW,

CxHxW

Sigmoid

[
—>» X —>

HxWx1

Figure 4: Attention Gate

3.7 SQEU-Net Architecture
The SQEU-Net architecture presented in Fig. 2 is
created with a symmetric encoder-decoder architecture

7

which consists of five dilated convolution blocks, four
max-pooling layers and four SE-embedded residual
units. The size of the input image is fixed to 128x128
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pixels, all convolution kernels fixed to 3x3 and pooling
kernels fixed to 2x2. The model then produces a binary
segmentation mask of the same spatial size after a series
of features extraction, downsampling and upsampling
processes. The dilated convolution units (Fig. 5a) are
used in place of the U-Net blocks (Fig. 5b) in the encoder
(Fig. 5a). The receptive field of dilated convolutions is

[ocnigHuubKa cratta / Research article

enlarged by placing holes in the kernel and does not
downsample spatial resolution. In training, the network
also learns to optimize the filter weights, dilation rates
to produce an effective multi-scale feature extraction
which enhances segmentation accuracy in the
complicated lesion regions.

Dilated
Conv

Tnput '—>

o

—>» BN —>» RelLU

Dilated
Conv

— BN —> ReLU —»| Output

Dilated

/ Squeeze Excitation Block \

|
|
4 Convolutional

Block

Scale

I
I
(R conv i

/ Squeeze Excitation Block \ |
+

Scale

d

Figure 5: Different building blocks employed in the paper. (a) U-Net basic building Convolutional block (b)
Dilated Convolutional Block (c) Residual Convolutional Block (d) SE Residual Block (e) SE Dilated Residual

The standard U-Net blocks have been replaced in the
decoder with expanded residual units (Fig. 5). Block
based Each block uses batch normalization and ReLU
activation following every dilated convolution (dilation
rate 2). Batch normalization helps in increasing
stability in learning and decreasing sensitivity to
parameterization whereas ReLU aids in mitigating
vanishing gradients. Following the combination of the
identity course and the transformed characteristics, SE
blocks refine the responses of the channels by the
rejection of irrelevant information and the endorsement
of discriminative patterns. Mechanisms of attention
incorporated in the skip connections enhance the effect
of feature fusion between encoder and decoder.

4. Dataset Description and Implementation details
4.1 Dataset

The SQEU-Net framework proposed is tested on a
curated kidney stone imaging dataset comprising of
renal images obtained through one of the clinical
diagnostic modalities, including the use of either the
computed tomography (CT) or ultrasound imaging
techniques that are commonly used to diagnose
urolithiasis. The data set is the grayscale images of the
abdomen that have the regions of kidneys that contain
visible stone structures, and there also are the expert-
labeled ground truth masks that show the accurate
spatial location of kidney stones. Each image is also
linked with stone composition data (e.g., calcium
oxalate, uric acid, cystine, or struvite), which makes it

8

Block.
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possible to classify stone types under supervision using
the labels that are segmented as well. The original
images are highly differentiated with regard to spatial
resolution, contrast, rock size, and complexity of the
anatomy background, as it is in the real world in terms
of clinical variation. This heterogeneity presents
significant difficulties to automated segmentation,
especially where the sizes of the stones are small, their
morphology is irregular or the edges are in low contrast
with the surrounding renal tissue. All images are resized
so as to maintain a fixed spatial resolution of 128 x 128
pixels to give consistency in network input, and aspect
ratios where possible as well as to reduce the
computational burden. To avoid data leaking the dataset
is divided into training, validation, and testing subsets
based on a patient-independent split to guarantee the
evaluation of the performance objectively. Through this
split, it is straightforward to perform healthy evaluation
of the generalization ability of the model to unobserved
subjects and imaging settings. In order to alleviate the
impact of scanty annotated medical information, and
augment the resilience of the learning process, large-
scale data augmentation plans are used in the course of
training. These comprise random rotations, horizontal
and vertical flipping, zooming and small affine
transformations simulating realistic changes in patient
positioning and image acquisition. The pixel intensity
values are brought to the range of 0 to 1, which reduces
illumination variations and stabilizes gradient changes
on optimization.
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4.2 Implementation Details

The SQEU-Net model is trained in an end-to-end
supervised way with the help of a deep learning
framework, which can be either TensorFlow or PyTorch.
This network is designed on a symmetric encoder-
dekoder architecture, where the encoder contains five
dilated convolutional blocks, the max-pooling layers
four and the decoder has four SE-embedded residual
blocks. Every convolutional layer uses 3 x 3 kernel and
max-pooling and transposed convolution use 2 x 2
kernels to downsample and upsample the spaces
respectively. To enlarge the receptive field, yet at the
same time, the spatial resolution is not compromised,
dilated convolutions with a dilation rate of 2 are used to
perform multi-scale feature extraction that is important
in the detection of kidney stones of different sizes and
shapes. Every convolutional layer is followed with a
batch normalization and ReLU activation, which
enhance the stability of convergence and vanishing
gradient problem in deep structures. Remaining
connections are added to facilitate effective feature reuse
and constant gradient flow and squeeze-and-excitation
(SE) modules are used to dynamically re-calibrate
channel-wise  feature  responses to  highlight
diagnostically significant stone features. The skip
connections are enhanced with Attention Gate (AG)
modules to choose only salient spatial data to be
transmitted to the decoder by the encoder, ignoring any
irrelevant background features caused by complicated
renal anatomy. The network does generate a binary
segmentation mask of the kidney stone area, and a
classification head that forecasts the type of the stone
using high-level learned features. Optimization of the
model is performed by the Adam optimizer and learning
rate is empirically set and training is performed over a
set number of epochs and early stopping is performed
based on validation performance to avoid overfitting.
Dice loss and binary cross-entropy loss are used together
in segmentation and categorical cross-entropy is used in
stone type classification so that both are balanced to
optimize.

In order to facilitate privacy-preserving learning in
various clinical settings, the architecture will be
configured to run within a federated learning framework
with local models being trained at each participating
location and model updates being communicated to a
central aggregator only. This will guarantee that
sensitive patient information are localized and enhance
generalizability of the model to heterogeneous data
distribution. In summary, the implemented framework is
computationally efficient, scalable, and appropriate to
apply in clinical settings in a real-world situation in
order to analyze kidney stones automatically.

5. Results and Discussion

All the experiments are performed with the help of the
workstation that has a high-performance graphic card
and the amount of memory to handle deep learning
workloads. A patient-wise split is used to split the data
into training (70%), validation (15 %) and testing (15%)
sets to prevent data leakage. The methods that use data
to improve Al performance, such as rotation, flipping,
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zoom, and affine transform, are made on the training set
only. SQEU-Net is end-to-end and trained by mini-batch
gradient descent. The Dice and validation loss curve is
observed during training to evaluate the convergence
behaviour. In federated learning experiments, the local
models are trained locally in each of the simulated client
locations, with a fixed number of local epochs, and the
weights of the local models are combined with federated
averaging. No image data of the raw type are transferred
between clients and this guarantees that medical data
privacy regulations are adhered to. The proposed model
will be compared with such baseline architectures as
standard U-Net, Attention U-Net, and ResU-Net under
the same conditions of the experiment. Comparisons of
performance can prove the effectiveness of the
architectural improvements and federated learning
framework by showing that SQEU-Net is better at
segmentation and stone type classification.

The Proposed SQEU-Net is comparatively assessed with

the following representative approaches:

e Liu et al. (2022) [42]: Deep learning-based kidney
stone segmentation with CT scans of patients in the
hospital.

e Chen et al. (2022) [45]: Convolutional deep learning
based on the HU weighting of kidney stones
segmentation.

e Two stage YOLOVS + ResNet-18 architecture (2025)
[47]: A recent detection-segmentation model to
analyze kidney stones.

The quantitative findings are a clear indication of the

excellence of the suggested SQEU-Net in every measure

that is considered. When compared with Liu et al. [42],

SQEU-Net shows an absolute Dice score gain of +9.2%,

which shows the usefulness of dilated convolutions and

attention-gated skip connections in both preserving
sharp edges of stones and reducing interference of the
background. Although Chen et al. [45] incorporates the
boundary refinement of HU-based weighting, the
application is limited by class imbalance and
computational cost which leads to a reduction in Dice
score by 7.2% as compared to SQEU-Net. The two-stage

YOLOVS + ResNet-18 model [47] is a powerful baseline

framework because of its sophisticated operation of

detection, but it depends on high-quality annotations and
multi-stage processing which propagates errors and
makes this framework lack scalability. Conversely,

SQEU-Net adopts a single end-to-end system with

confidence blocks of SE-residual and attention blocks

that result in a 4.2-percentage point of Dice and a +2.3-
percentage point classification accuracy. Furthermore,
the federated learning functionality of SQEU-Net has
offered a considerable practical benefit in that multi-
institutional training is a form of training that is privacy-
converting, which has not been discussed in the
comparative methods. In general, experimental data
demonstrates that SQEU-Net provides cutting-edge
segmentation precision, effective stone type recognition,

and the high level of generalization, which is why it is a

good candidate to be used in the real-world clinical

environment.
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Table 2: Comparative Segmentation Performance

. Precision | Recall Accuracy
o, o,
Method Dice (%) | IoU (%) (%) (%) (%)
Liu et al. (2022) [42] | 88 80.4 91 86.5 93.2
8;“ ot al. (2022) | g, 82 92.4 88.7 94.5
YOLOv8 + ResNet-
18 (2025) [47] 93 86.8 94.1 91.6 96
Proposed  SQEU- | o, 94.5 97.9 96.4 98.3
Net
Dice Score Comparison for Kidney Stone Segmentation
100
80 1
g 60 1
v
.5 40 4
201

Methods

Figure 6: Dice Score Analysis

Figure 6 shows the relative Dice Score of all the methods
evaluated. The SQEU-Net proposed has the best Dice
score (97.2%), which means that it has better overlap
between the predicted and ground-truth kidney stone

regions. This result demonstrates that dilated
convolutions and attention-gated skip connections are
effective at preserving fine stone edges especially in
small and low contrast stones.

loU Comparison for Kidney Stone Segmentation

80

60 -

loU (%)

204

Methods

Figure 7: IoU Comparison

Figure 7: depicts the Intersection over Union (IoU)
comparison. Competing methods have lower an IoU
(94.5) which makes the difference between SQEU-Net
much better because it has lower false positives and

10 Kidneys

better boundary precision. The two-stage YOLOvVS-
based framework performance improvement also
underscores the benefit of an end-to-end segmentation-
based framework.
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Distribution of Segmentation Metrics
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Figure 8: Distribution of Segmentation Metrics

Figure 8, illustrates the box plots of segmentation
measurements (Dice, IoU, Accuracy). The smaller
interquartile range and increased median figures to the
suggested SQEU-Net demonstrates homogenous and

steady performance across the metrics. The lower
variance indicates higher generalization and reliability,
which is highly valuable to clinical implementation in
the real world.

Table 3: Kidney Stone Type Classification Performance

Method Classification | Precision Recall :?clo-re
Accuracy (%) | (%) (%) (%)
(1]
YOLOv8 + ResNet-18
(2025) [47] 96 95.2 94.6 94.9
Proposed SQEU-Net 98.1 97.6 96.9 97.2

Calcium Oxalate

Uric Acid |

Struvite |

Figure 9: Segmentation and Type classification

Figure 9 represents typical outputs of kidney stones
segmentation and type classification using the proposed
framework of SQEU-Net on the abdominal CT images.

11
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The rows represent the specific kidney stone make-up
i.e. calcium oxalate, uric acid and struvite, and the
columns denote the initial CT, the estimated
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segmentation mask and the final overlay with the stone
type marked, respectively. The outcomes of
segmentation show that even in cases when the stones
have low contrast with the nearby renal tissues, the
boundaries of the stones are accurately delineated,
which indicates the effectiveness of dilated convolutions
and attention-gated skip connections in the maintenance
of fine spatial information. Moreover, the proper
categorization of the stone types shows that the model is
able to capture the small textual and intensity-oriented
clues that are related to various stone types. The
distinctiveness of the detached background renal
structures and the stone regions, as well as the consistent
labeling of types, demonstrates the strength of the
suggested algorithm in simultaneously conducting pixel-
level segmentation and the clinically significant
recognition of stone types, which has to be considered to
help in planning the treatment individually in the context
of urolithiasis management.

6. Conclusion

A powerful and effective deep learning architecture
labeled SQEU-Net has been introduced in this piece of
work where computations are done to segment kidney
stones in the CT images correctly. With the addition of
the traditional U-Net framework with dilated
convolutional blocks, SE-embedded residual units, and
attention-gated skip connections, the proposed model
has demonstrated the capability to define the stone
boundaries with a high degree of accuracy, both at finer
scale and a larger scale, including the contextual details.
Stable gradient propagation, efficient feature reuse
through the presence of residual learning, and the
boosted discriminative feature representation through
the squeeze-and-excitation modules that highlight
clinically meaningful channels makes the application of
squeeze-and-excitation models a crucial component of
UTIs. Moreover, attention gates improve the process of
feature fusion in decoding irrelevant background
information leading to better segmentation. The
numerous performance measures through extensive
experimentation show that SQEU-Net is a better method
of kidney stone segmentation in comparison with a
number of existing methods based on evidence. It is
noteworthy that the proposed architecture demonstrates
greater resilience when it comes to dissecting small
stones and stones with a low contrast, which tends to be
a significant issue in clinical CT imaging. The present
study is binary stone segmentation, but future studies
will view more classes of segmentation in studying the
composition of the stone, 3D volumetric data, and be
verified using large multi-center datasets. Altogether,
SQEU-Net is an important step to the stable and clinical
applicable automated kidney stone analysis systems.
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