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Abstract

Kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), pose a substantial global health
burden and are associated with high morbidity, mortality, and healthcare costs. Conventional methods for renal health
assessment are limited by delayed detection, inter-observer variability, and restricted capacity to integrate complex,
longitudinal data. Recent advances in deep learning have created new opportunities to enhance renal disease assessment
through data-driven, automated, and scalable approaches. This review aims to evaluate the role of deep learning in
improving renal health assessment across structural, functional, and clinical domains, with a focus on its potential to
support early diagnosis, risk stratification, and personalized renal care. A comprehensive narrative review of the literature
was conducted, focusing on peer-reviewed studies that apply deep learning techniques to renal imaging, functional
assessment, disease classification, renal replacement therapy, and transplantation. Key challenges related to data quality,
interpretability, ethical considerations, and clinical implementation were also examined. Deep learning has demonstrated
strong performance in structural renal assessment, including kidney segmentation, cyst quantification, and tumor
classification. Functional applications include early prediction of AKI, estimation of renal function decline, and imaging-
based glomerular filtration rate assessment. Integration with electronic health records has enabled improved disease
classification, risk stratification, and outcome prediction. Emerging applications in dialysis and transplantation show
promise for optimizing advanced renal care. Deep learning offers significant potential to enhance renal health assessment
and clinical decision-making. Continued advances in explainability, data integration, and ethical deployment will be
critical for successful clinical translation and widespread adoption in nephrology practice.
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1. Introduction

Kidney diseases pose a significant and increasing
worldwide population health issue, which has a
significant morbidity and mortality burden on the
healthcare system of the world. Chronic kidney disease
(CKD) occurs in hundreds of millions of patients and is
characterised by a gradual reduction in renal
functioning, which results in end-stage renal disease and
the heightened risk of cardiovascular diseases.
Moreover, acute kidney injury (AKI) is a common and
complicated complication of hospitalisation and critical

illness, and it is commonly a precursor to permanent
renal failure. Renal disorders are complicated and
heterogeneous conditions which require precise, timely,
and thorough methods of kidney health assessment in
order to enhance patient outcomes and inform clinical
decision-making.

Chronic kidney disease is defined as a long-term or
prolonged condition of abnormal kidney structure or
functionality beyond three months that has major health
consequences. Romagnani et al. gave an elaborate
description of CKD as a multidimensional disease entity
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that has various etiologies, progressive nature, and
systemic effects [1]. In the early stages, CKD can be
asymptomatic and this factor leads to the late diagnosis
and restricts the possibility of early intervention. Early
and accurate diagnosis of the disease is crucial because,
as the renal functionality worsens, patients are more
likely to develop cardiovascular disease, metabolic
complications, and premature death.

The current burden of CKD has grown significantly
during the last decades due to the ageing population and
the escalating rates of diabetes, hypertension, and
obesity. Bikbov et al. have made a thorough study of the
global, regional and national trends in the burden of
CKD, which show that all parts of the world are
experiencing a steady rise in prevalence and mortality
rates associated with CKD [2]. Their results point to the
fact that there is a huge geographic difference in the
disease burden and access to care, especially in low- and
middle-income nations. These tendencies put increasing
pressure on healthcare services and highlight the
necessity of scalable and cost-effective kidney disease
evaluation and monitoring tools.

Acute kidney injury is another severe element of renal
disease burden that is especially present in hospitalised
and critically ill groups. AKI has been linked to sudden
decreases in renal function and is linked to a higher rate
of short-term mortality, extended hospitalisation, and
high healthcare expenses. Hoste et al. outlined the
epidemiology of AKI in the world, stating its great
prevalence in different clinical environments and its
close correlation with unfavourable outcomes [3].
Notably, AKI is not merely an acute phenomenon but
also a contributor to the further occurrence and
progression of CKD, which further increases post-renal
disease effects on the overall patient health.

Although kidney diseases are very heavy, traditional
approaches to renal health evaluation have significant
weaknesses. Conventional biomarkers like serum
creatinine and estimated glomerular filtration rate give
indirect and delayed indications of kidney functioning.
Levey and Coresh pointed out the advantages and
weaknesses of the existing CKD classification and
assessment strategies and pointed out that such measures
might be affected by age, muscle mass, and comorbidity
[4]. The informative techniques of imaging and biopsy
are resource-consuming, prone to inter-observer
variability, and do not always lend themselves to
repeated or large-scale use.

Here, the concept of using the most advanced
computational methods to improve the assessment of
renal health is gaining traction. The growing access of
large-scale clinical, imaging, and longitudinal data has
provided novel opportunities to use data to analyse
nephrology. Artificial intelligence, and deep learning
specifically, provides the capability to approximate the
relationships between complex and non-linear entities in
high-dimensional data and identify clinically significant
patterns that might otherwise be inaccessible to
traditional methods of analysis. These features make
deep learning a prospective instrument in enhancing the
process of early detection, risk stratification, and
longitudinal monitoring of renal disease.
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This review aims to critically analyse the importance of
deep learning in improving the renal health assessment
based on the synthesis of existing evidence in structural,
functional, and clinical areas. This article aims to offer
an introductory insight into the way deep learning can be
used to assist in the provision of more accurate, efficient,
and personalised renal care by reviewing the latest
developments, problems, and opportunities and laying
the groundwork towards the improvement of nephrology
and urology practise.

2. Deep Learning Concepts Relevant to Renal
Medicine

Deep learning (DL), a branch of machine learning on
artificial neural networks with multiple hidden layers,
has become a paradigm shift in contemporary medical
research and practise. In contrast to traditional machine
learning methods which are very dependent on hand
designed features, deep learning models learn
hierarchical representations using raw data, which gives
them better results in complex and high dimensional
biomedical data. The LeCun et al. seminal work made
deep learning a paradigm, emphasising its ability to
capture non-linear relationships, as well as its specific
applicability to image, signal, and sequential data, which
is often present in healthcare [5].

Convolutional neural networks (CNNs) are also the most
popular deep learning structures used in medicine.
CNNs are uniquely tailored to manipulate grid-like data
like medical images and have shown impressive
performance in processes like detection, segmentation
and classification. CNN-based frameworks are
especially useful in renal medicine to analyse ultrasound
images, computed tomography (CT) images, magnetic
resonance imaging (MRI) images, and histopathological
images. The extensive survey by Litjens et al.
emphasises that CNNs are superior in medical image
analysis and strong in extracting clinically significant
spatial features which frequently outperform human
performance at individual diagnostic tasks [6]. In
addition to CNNgs, representation learning can be used to
find latent features that reflect complex patterns of
diseases without direct annotation, allowing scalable and
generalizable renal health evaluation.

Deep learning processes in healthcare are not confined
to model architecture but are also the whole pipeline,
including data acquisition and clinical deployment.
Esteva et al. presented a standardised working process,
which included data preprocessing, model training,
model validation, and model testing and prospective
evaluation in real-world clinical practise [7]. In the renal
process, such workflow frequently incorporates
multimodal data, such as imaging, laboratory values,
and electronic health records. To maintain
reproducibility and clinical reliability, proper dataset
curation, missing data, and data leakage prevention are
necessary. Further, clinically relevant metrics, including
sensitivity, specificity, area under the receiver operating
characteristic curve, and calibration, are essential in
determining the usefulness of the model in the practise
of nephrology.

Although deep learning models have impressive
predictive performance, the black-box nature of deep
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learning models presents considerable challenges to
clinical adoption. The interpretability and explainability
of models are especially important in renal medicine,
where the results of diagnostic and treatment choices
have long-term outcomes on patients. Explainable
artificial intelligence (XAI) approaches seek to offer an
understanding of how models reach certain predictions
and thus improve clinician trust and enable regulatory
acceptance. Samek et al. have examined a wide range of
explainability methods such as saliency maps, layer-
wise relevance propagation, and feature attribution
methods, which are being more and more used in
medical professional areas [8]. Such techniques in renal
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imaging may emphasise anatomy or biomarkers that are
driving model predictions, and bring algorithmic outputs
in line with existing clinical reasoning.

Deep learning offers a solid methodological base to
support the development of renal health evaluation with
strong architectures, structured processes, as well as new
explainability solutions. These are the key ideas that
should be understood to critically assess the existing
applications and to inform responsible implementation
of deep learning models into nephrology and urology
practise. A schematic overview of the deep learning
workflow for renal health assessment is illustrated in
Figure 1.
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Figure 1. Deep Learning Pipeline for Renal Health Assessment

3. Renal Data Modalities and Sources

The success of the approaches based on deep learning in
the context of renal health assessment primarily depends
on the availability and diversity of underlying data and
their quality. Renal medicine enjoys a broad spectrum of
data modalities which offer complementary information
on kidney structure, function and disease pathology. Of
them, the medical imaging data represent one of the
main points of deep learning usage, providing the non-
invasive visualisation of the renal morphology and
pathology. Erickson et al. pointed out the critical
importance of imaging modalities which are ultrasound,
computed tomography (CT), and magnetic resonance
imaging (MRI), as in machine learning-based medical
analysis, they are ideally suited to the execution of such
tasks as segmentation, lesion detection and disease
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classification [9]. The imaging information in
nephrology is regularly employed to assess the size,
morphology, perfusion, and the existence of structural
abnormalities, which makes it especially vulnerable to
the analysis of convolutional neural networks.

Besides imaging, critical care and longitudinal clinical
data are also crucial in the assessment of renal health,
particularly in the functional assessment and prognosis.
Electronic health record systems of intensive care units
and hospital-wide large-scale databases allow
developing predictive models of acute kidney injury,
disease progression, and mortality. MIMIC-III database
was pioneered by Johnson et al. as an openly accessible
critical care database, which included physiological
measures (high-resolution), laboratory findings, and
clinical documentation, all spanning very long periods
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[10]. These longitudinal data have particular importance
in modelling time-dependent changes in renal
functionality and training deep learning-based solutions
that can predict risks continuously and provide early
warning, which are critical in the management of acute
and chronic kidney diseases.

The information on pathology and radiology can also
complement renal datasets with micro- and macro-level
insights into kidney disease. Histopathological slides
provide comprehensive information about the changes in
glomerular, tubular, and interstitial, radiological images
are used to record the structural changes in the organ
level. Nonetheless, these data sources are very difficult
to integrate. Shah and Gautam also mentioned several
diagnostic and technical barriers to implementing
artificial intelligence in pathology and radiology, such as
inconsistency in image acquisition protocols, inter-
observer differences in annotation, and non-standardised
labelling practises [11]. In renal medicine, these issues
are especially acute as the heterogeneity of the disease
and minor morphological differences may make it hard
to train and validate the model.

The quality of data, heterogeneity, and preprocessing are
some of the essential factors to consider when designing
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deep learning models to assess the renal condition. Renal
datasets can be several institutions, imaging devices, and
clinical settings which can contribute to significant
differences in data distributions. According to
Lundervold and Lundervold, strict preprocessing, such
as normalisation, artefact removal, and data
augmentation, is necessary to reduce scanner-specific
biases and enhance model generalizability, especially in
studies with MRI [12]. Also, lack of data, imbalance of
classes, and small sample sizes are still an issue in the
renal research that requires attentive dataset curation and
validation measures.

The renal data modalities are a complicated ecosystem
of imaging, clinical and pathological data. To effectively
exploit such a wide range of sources, it is necessary not
only to have sophisticated deep learning architectures
but also to be careful about data quality and
harmonisation. Overcoming these issues is a pre-
condition to developing strong, clinically translatable
deep learning systems in the renal health assessment.
The major renal data modalities and their associated
deep learning applications are summarized in Table 1.

Table 1. Renal Data Modalities and Their Applications in Deep Learning—Based Renal Health Assessment

Data Modality Examples Clinical Purpose Deep Learning Tasks | References
Ultrasound B-mode, Doppler Renal size, | Segmentation, Erickson et al. [9]
obstruction classification
CT Imaging Contrast-enhanced Structural Lesion detection Erickson et al. [9]
CT assessment
MRI Structural & | Tissue Feature learning Lundervold and
functional MRI characterization Lundervold [12]
Histopathology Biopsy slides Cellular-level Image quantification Shah and Gautam [11]
diagnosis
Clinical/EHR Labs, vitals Longitudinal Temporal modeling Johnson et al. [10]
Data monitoring

4. Deep Learning for Structural Renal Assessment
The structural evaluation of the kidneys is a fundamental
part of the process of renal diagnosis and treatment since
most renal diseases appear in the form of anatomical and
morphological alterations. Deep learning has become a
potent instrument of automation and upgrading of the
renal structure analysis, especially because it can process
complex images and histopathological data with high
accuracy and consistency. Automated kidney and cyst
segmentation is one of the most outstanding applications
in this field and it is necessary to quantify the disease
burden and progression. Kline et al. showed that
semantic segmentation models based on deep learning
are effective in detecting and localising kidney cysts in
magnetic resonance images of patients with autosomal-
dominant polycystic kidney disease with an acceptable
precision level that is challenging to obtain manually
[13].

In addition to gross anatomical imaging, deep learning
has facilitated the analysis of renal histopathology by
allowing objective assessment of tissue-level changes in
high amounts of tissue. Histopathological examination
has been the gold standard of diagnosis of most of the
renal diseases, but is time-consuming and prone to inter-
observer variability. Bouteldja et al. used deep learning-
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based segmentation and quantification methods on
experimental kidney histopathology and showed neural
networks can be reliable in detecting and quantifying
essential structural features, glomeruli, tubules, and
fibrotic areas [14]. These methods do not only enhance
reproducibility, but also enable large-scale quantitative
analyses which can reveal hidden pathological trends,
applicable to disease mechanisms and treatment
response.

Deep learning has demonstrated a great potential in renal
mass classification through cross-sectional imaging
methods like contrast-enhanced computed tomography
as well. Proper distinction between benign and
malignant kidney lesions is instrumental in the provision
of clinical decision-making and the prevention of
avoidable treatments. Zabihollahy et al. proposed a
convolutional neural network-based model with
decision fusion method to classify solid renal masses on
CT images, and with high diagnostic accuracy [15].
Radiologists can be assisted with such models as they
offer high-quality, data-driven evaluations of renal
tumours, especially in complicated or doubtful cases.
Notably, recent works have transcended beyond the
proof-of-concept research to the clinical implementation
of deep learning models in structural renal evaluation.
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Goel et al. published the clinical application of a deep
learning-based kidney segmentation framework in
polycystic kidney disease MRI, and it was integrated
into the regular clinical practise [16]. This paper has
emphasised  essential ~ factors in  successful
implementation such as robustness of models with
different imaging protocols, easy-to-use interfaces, and
compatibility with the current radiology systems.
Clinical use is an important milestone in the process of
transferring deep learning innovations to patient care.
The role of deep learning in improving the structural
renal evaluation has significantly advanced on multiple
scales, such as organ-level imaging to tissue-level
histopathology. The objective quantification, automated
segmentation and reliable classification of the renal
structures are enhancing diagnostic accuracy and
efficiency and minimising variations among the
observers. With the continuous maturation of clinically
deployed systems, deep learning will become an even
more inseparable part of the structural assessment of the
renal health.

5. Deep Learning for Functional Renal Assessment

The functional assessment of kidneys is critical in
determining the severity of the disease, treatment
decisions, and long-term prognosis among patients with
renal diseases. The conventional renal function indices,
including serum creatinine and estimated glomerular
filtration rate (eGFR) have shortcomings of slow
responsiveness and inter-subject deviation. The
increasing interest in deep learning-based approaches as
having the capability to model complex, nonlinear
relationships in high-dimensional clinical data and to
offer earlier and more valid functional assessment has
thus increased. A major use is the forecasting of cellular
renal disease. Chen et al. created and externally tested an
ensemble machine learning model that combines various
clinical variables to forecast long-term worsening of
renal status in patients with CKD with better predictive
accuracy compared to traditional statistical models [17].
Another area of deep learning that can be of great
clinical use is the early diagnosis of acute kidney injury
(AKI). SKI usually leads to a rapid development and is
linked to higher morbidity and mortality, especially in
patients who are hospitalised and are in critical
conditions. Koyner et al. have outlined the creation of an
inpatient AKI prediction model that was developed
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based on routinely gathered electronic health record data
using machine learning and allowed risk stratification
before serum creatinine levels had a chance to rise
dramatically [18]. Clinicians can use such predictive
systems to administer preventive interventions earlier,
and this may help reduce renal damage and enhance
patient outcomes. These models highlight the fact that
deep learning can discern small time patterns in
physiological and laboratory data that predict clinically
known AKI.

Continuous and real-time functional monitoring has
developed as one of the most important developments
brought about by deep learning based on early detection.
Instead of using the static or intermittent assessment,
continuous prediction models can dynamically update
risk estimates with the emergence of new data. Tomasev
et al. presented a deep learning-based method of
predicting future AKI continuously that can be used in
clinical practise, showing its ability to provide real-time
warning hours to days before clinical onset [19]. This
renal care shift is a paradigm shift of reactive to
proactive and demonstrates why deep learning has
potential to help timely clinical decision-making and aid
patient safety in high-risk environments.

Besides the data-driven functional prediction, deep
learning has further widened the range of renal function
assessment by imaging-based estimation methods.
Traditional eGFR estimates can only give a worldwide
estimate of kidney functionality and fails to recognise
inter-kidney  variability and localised impaired
functionality. Bao et al. suggested a deep learning
framework to estimate the single-kidney glomerular
filtration rate by imaging data in a wide range of renal
diseases and provided a non-invasive and more granular
evaluation of renal functioning [20]. These methods are
especially helpful with a unilateral disease, preoperative
planning and post-transplant evaluation.

These developments show the increased use of deep
learning in functional renal evaluation. Deep learning
technologies are transforming the process of renal
function assessment and treatment in a clinical
environment, allowing to identify injury earlier, monitor
renal status continuously, and estimate kidney function
using innovative imaging methods. A summary of deep
learning applications in structural and functional renal
assessment is presented in Table 2.

Table 2. Deep Learning Applications Across Structural and Functional Renal Domains

Assessment Clinical Task Data Deep Learning | Clinical Utility Key References

Domain Type Approach
Kidney MRI, CT | CNN-based Disease burden | Kline et al [13];
segmentation segmentation quantification Goel et al. [16]

Structural Renal mass | CT CNN with | Tumor Zabihollahy et al.
classification decision fusion characterization [15]
Histopathology Biopsy DL-based image | Objective tissue | Bouteldja et al. [14]
analysis images analysis assessment
CKD progression | Clinical Ensemble Early  intervention | Chen etal. [17]
prediction data ML/DL planning

. AKI early | EHR data | Temporal DL | Real-time risk alerts | Koyner et al. [18];

Functional . y
detection models Tomasev et al. [19]
GFR estimation Imaging CNN regression | Non-invasive Bao et al. [20]

data models function assessment
35 Kidneys Vol. 15, No. 1, 2026



6. Disease Classification and Risk Stratification

The key to personalised renal care is accurate disease
classification and risk stratification because patients
with kidney disease are highly heterogeneous in their
disease progression, response to treatment, and clinical
outcome. The traditional classification systems which
are usually founded on fixed clinical cutoffs can be
inadequate to record the interplay among demographic,
biochemical, and comorbid variables that determine the
courses of renal diseases. There has been an increased
adoption of machine learning and deep learning
approaches to enhance risk prediction and to facilitate a
more careful stratification of patients. Lerner et al.
conducted a review of modern risk predictive models of
chronic kidney disease progression and found that to
predict high-risk patients and implement an intervention
strategy in time, it is essential to consider a combination
of various clinical factors [21].

In addition to chronic kidney disease, stratification with
machine learning has demonstrated special potential in
the acute kidney injury, in which it is essential to identify
high-risk patients as early as possible. Zhang et al. used
machine learning to forecast volume responsiveness in
oliguric acute kidney injury patients in the intensive care
unit and found out that data-driven models could be
more effective than traditional clinical parameters in
ranking patients by physiological response and risk [22].
This stratification allows making decisions on the
treatment of each person more individually, which may
prevent complications related to the management of
fluids and increase short-term outcomes in critically ill
populations.

The mainstream implementation of electronic health
records (EHRs) has increased the pace of deep learning
in nephrology even further by promoting the use of deep
learning in the classification of diseases and the
evaluation of risks. Longitudinal and multimodal data
including laboratory results, medications, vital signs and
clinical notes can be found in EHRs, creating a rich
substrate on which predictive modelling can be
performed. A deep learning-based method of risk
prediction based on electronic health records was
presented by Cheng et al., and it was shown that neural
networks can automatically learn more complex
representations of features based on large-scale clinical
data [23]. These methods can be used in renal medicine
to support ongoing risk evaluation at various levels of
care, including outpatient management of CKD and the
inpatient monitoring of AKI.

Deep learning can perform phenotyping of large
populations of patients and subgroups on a large scale,
beyond a disease nomenclature and more specifically
characterise clinical phenotypes. Landi et al. have shown
how deep representation learning can be used to identify
latent patient subgroups in electronic health records and
scale stratification without depending on predefined
labels [24]. This method can be used in the setting of
renal disease to identify previously unknown phenotypes
related to specific progression patterns, responses to
treatment, or the risk of complication. This type of data-
based phenotyping has been used to enable precision
nephrology approaches, in which interventions are not

36
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applied to all patients but to particular subgroups of
patients.

The disease classification and risk stratification based on
deep learning have profound benefits compared to
traditional methods because they can represent the high-
dimensional and complicated relationships present in
clinical data. These approaches are helping to increase
the individualization and effectiveness of renal care
through better prediction of CKD progression, more
precise stratification of AKI patients, and scalable
analysis of electronic health records.

7. Applications in Renal Replacement Therapy and
Transplantation

Renal replacement therapy and kidney transplantation
are more advanced levels of renal care, in which clinical
judgement is complicated and outcomes vary depending
on a vast array of patient-, donor-, and treatment-related
variables. Artificial intelligence and specifically
machine learning and deep learning methods have also
been used more and more to aid in decision-making in
these environments by enhancing outcome prediction
and risk stratification. Among the most important ones,
it can be listed the prediction of long-term results after
kidney transplantation. Badrouchi et al. showed that the
multidimensional clinical variables could be effectively
combined with the help of artificial intelligence-based
models to predict long-term transplant outcomes and
provide greater prognostic accuracy than traditional
statistical methods [25]. These models can be used to
assist in customising post-transplant care and
maximising the graft function in the long-term.

Another important aspect of transplant medicine is the
accurate modelling of graft failure and prognosis of
survival risk because early detection of patients at risk of
developing graft losses can be used to provide
surveillance measures and treatment. A systematic
review of kidney transplantation graft failure risk
prediction models was performed by Kaboré et al.,
which indicates a potential and weaknesses of the
current methods [26]. Their results highlight the
importance of the strong, tested machine learning
models that can help to model intricate interplay of
immunological, clinical, and demographic variables.
The issues of non-linear relationships that deep learning
methods can learn make them especially applicable to
the specified challenges and contribute to better graft
survival predictions.

The risk of mortality after the commencement of renal
replacement therapy is unacceptable in the situation of
dialysis, particularly in the first period of the treatment.
Machine learning models are created to recognise
patients who are at high risk of dying shortly to allow
targeted interventions and better care planning. Rankin
et al. introduced a model of machine learning to predict
mortality in 90 days after dialysis start and it proved to
be more effective in comparison with traditional risk
assessment instruments [27]. Timely clinical decision-
making, such as dialysis modality, dialysis intensity, or
supportive care may be achieved by identifying high-
risk patients early in their course.
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In addition to individual predictive tasks, artificial
intelligence is being implemented more and more in
larger decision support systems in renal replacement
therapy. Badrouchi et al. suggested a holistic machine
learning system predicting long-term graft survival
following kidney transplantation with a focus on the
clinical processes of predictive output integration [28].
These frameworks are not only expected to produce
correct predictions, but also provide actionable insights
that can be easily interpreted by clinicians. Al-based
decision support systems can enhance the outcomes
throughout the spectrum of renal replacement therapy by
assisting in making decisions associated with donor-
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recipient matching, treatment planning, and follow-up
strategies.

Deep learning applications in renal replacement therapy
and transplantation are examples of how artificial
intelligence is increasingly being applied in managing
complex, high-stakes clinical scenarios. Al-based
solutions provide a promising solution to the idea of
improving the personalised care and resource use in the
management of advanced renal disease through better
prediction of transplant outcomes, graft survival, and
dialysis-related mortality. Representative deep learning
models applied across renal imaging, functional
assessment, dialysis, and transplantation are
summarized in Table 3.

Table 3. Representative Deep Learning Models in Renal Health Assessment

Clinical Domain | Application Data Type Model Type | Key Outcome References
Structural Kidney & cyst | MRI CNN Accurate Kline et al [13]; Goel
imaging segmentation volumetric etal. [16]
assessment
Histopathology Tissue Biopsy CNN-based | Reduced observer | Bouteldja et al. [14]
quantification images analysis variability
Tumor Renal mass | CT CNN + | Improved Zabihollahy et al. [15]
assessment classification fusion diagnostic
accuracy
Functional CKD progression | Clinical data | Ensemble Early risk | Chenetal. [17]
assessment prediction ML/DL identification
Acute care AKI early | EHR Temporal Advance warning | Koyner et al. [18];
detection DL of AKI Tomasev et al. [19]
Dialysis Mortality Registry data | ML models Short-term Rankin et al. [27]
prediction mortality risk
Transplantation Graft survival | Multicenter | ML/DL Long-term Badrouchi et al. [25];
prediction data models outcome prediction | Badrouchi et al. [28]

8. Clinical Translation and Implementation

A major challenge in the process of translating deep
learning systems out of the research setting to everyday
nephrology practise is still present, even though the
technical  performance is increasingly being
demonstrated. There are several obstacles to clinical
implementation, such as the limitation of data quality,
the inability to generalise the results in different
healthcare environments, and regulatory approval and
patient safety concerns. Kelly et al. pointed out the major
barriers to clinical impact of artificial intelligence and
included such issues as bias in algorithms, lack of
external validation, and the mismatch between the
development of the model and real-world clinical
requirements [29]. Such issues are exacerbated by
heterogeneity of the diseases and differences in clinical
workflow in institutions in renal medicine.

Human-AI cooperation is becoming an indispensable
condition of successful implementation of deep learning
tools in the practise of nephrology. Instead of
substituting clinicians, artificial intelligence systems are
best used when created to support human expertise by
giving decision support and actionable advice. Topol
explained the idea of high-performance medicine,
whereby human judgement and artificial intelligence
collaborate to increase the accuracy of the diagnosis, its
efficiency, and patient outcomes [30]. The approach to
collaboration is especially pertinent in the field of
nephrology since clinical judgments may frequently
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involve the delicate interpretation of patient history, lab
trends, and imaging results beyond the output of
algorithms.

Real-world implementation studies offer useful
information on the practical implications of deploying
deep learning models into clinical practise. The article
by Sendak et al. describes the implementation of a deep
learning-based sepsis prediction system in regular
clinical practise and shows issues concerning clinician
engagement, workflow interference, and model
maintenance [31]. Despite the sepsis focus, the insights
gained during the study are very applicable to the renal
context, where the provision of timely alerts and
prediction of risk should be integrated into the current
electronic health record systems to prevent the problem
of alert fatigue and make clinical use. Interdisciplinary
collaboration of clinicians, data scientists and health
system leaders is crucial in such studies during
implementation.

Clinical decision support systems that run on deep
learning are essential to assess their safety, effectiveness,
and long-term adoption. Magrabi et al. raised
methodological issues of evaluating artificial
intelligence-based clinical decision support systems,
such as the necessity to develop stringent evaluation
models that consider the human-system interaction and
changing clinical circumstances [32]. In nephrology, the
assessment should not be limited to predictive accuracy,
but it should also involve clinical impact, workflow, and
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patient outcome measures. Performance drift and
unwanted consequences may also be detected over time
through continuous monitoring and post-deployment
auditing.

Clinical translation and implementation are important
processes of achieving the promise of deep learning in
renal health assessment. The deployment barriers,
effective human-Al collaboration, learning about the
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real-world implementation experiences, and critical
evaluation of clinical decision support systems are
critical in ensuring that deep learning technologies can
provide meaningful and sustainable benefits to
nephrology practise. The integration of deep learning
applications across the renal care continuum is
summarized in Figure 2.

Early-stage care Acute care
* CKD screening ¢ AKI detection
* Risk Prediction ¢ ICU monitoring

Advanced care
« Dialysis decision
support
« Transplant outcome
prediction

~

Feedback loop
* Continuous learning
and monitoring

Figure 2. Clinical Integration of Deep Learning Across the Renal Care Continuum

9. Challenges, Ethical Considerations, and
Limitations

Even though deep learning in the renal health assessment
is increasingly promising, there are major challenges and
ethical issues that need to be addressed to foster safe,
equitable, and responsible clinical practise. The problem
of algorithmic bias is one of the most urgent ones that
may occur when training data fails to adequately
represent different populations of patients. Obermeyer
emphasised the ability of biassed healthcare algorithms
to reproduce and even increase existing health
disparities especially when socioeconomic and racial
factors are not sufficiently considered in the model
design [33]. Such biases in renal medicine can lead to
disproportionate risk prediction or slower intervention of
underrepresented  groups, which highlights the
importance of developing models fairly and validating
them with external data in a diverse range of cohorts.
The issue of regulatory and legal hurdles also makes the
implementation of artificial intelligence in medicine
more complex. Contrary to conventional medical
devices, deep learning systems are not static but can
change with time as they are updated or retrained on new
data. Minssen et al. reviewed regulatory reactions to
medical machine learning, highlighting the challenge of
the application of currently existing laws to adaptive Al
technologies [34]. Regulatory clarity is critical in
nephrology, where Al-driven tools are likely to impact
such vital decisions as dialysis or transplant initiation, as
this field is likely to expose patients to potential harm,
liability, and non-adherence to healthcare practises. It is
also a challenge to set up clear guidelines that would be
used to approve, monitor and undertake post-market
surveillance.

Clinician trust and acceptance of Al-assisted tools also
focus on explainability and transparency. Most deep
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learning models are black-box and thus clinicians find it
hard to comprehend the way predictions are made. The
model-agnostic explainability methods presented by
Ribeiro et al. enable the provision of interpretable
explanations to individual predictions to improve the
bridging of the gap between clinical reasoning and
algorithmic output [35]. Explainable models can be used
to boost clinician confidence in renal health assessment
by emphasising features, which may include laboratory
trends or imaging regions, that lead to predictions. Even
highly accurate models can be resisted by the clinicians
and rarely adopted in practise without sufficient
transparency.

Ethical responsibility and accountability are other issues
in Al-assisted care. In case an Al system is involved in a
clinical decision that harms patients, it becomes tricky to
ascertain the responsibility of the clinicians, the
developers, and the healthcare institutions. Naik et al.
addressed the issue of legal and ethical aspects of
accountability and liability in healthcare Al, pointing to
the significance of the roles definition and the
development of the governance frameworks [36]. In
nephrology, where intervention choices may have
prolonged consequences, to be morally used, Al systems
should serve as tools and not as decision-makers, and
clinicians need to stay in charge of patient care.
Although the opportunities of deep learning to improve
the process of renal health assessment are significant, it
has limited implementation due to its problem of bias,
regulation, interpretability, and accountability. To
overcome these shortcomings, it is critical to consider
these technologies in terms of ethical design, transparent
assessment, and solid governance frameworks to make
sure that Al technologies are implemented in a
responsible and fair way in the field of renal medicine.
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10. Future Directions in Deep Learning—Driven
Renal Assessment

Since deep learning is still in its infancy, there are a
number of new trends that will define the future of the
renal health assessment systems. The use of federated
and privacy-preserving learning models is one of the
most promising ones, as it allows training models
collaboratively across multiple institutions without
sharing the raw data of patients. Kaissis et al. showed
that federated learning methods have the potential to
preserve data privacy and provide strong performance in
medical images, which is vital in the context of data
security and the ability to comply with regulatory
policies [37]. Such frameworks may be useful in
nephrology, where patient data is very sensitive and may
be siloed across healthcare systems, yet still support the
development of large-scale, multicenter models and
maintain patient confidentiality.

It is also anticipated that deep learning will be the key to
the improvement of precision and personalised
nephrology. The conventional renal care tends to be
based on the population-wide rules that are not always
able to consider the differences in disease development
and response to treatment. Martel et al. have talked about
the use of artificial intelligence in precision medicine
and stress that it could personalise diagnostic and
therapeutic plans to the profiles of the individual patient
[38]. Deep learning models that are capable of
combining genetic, clinical, and environmental data may
allow predicting disease progression more precisely and
providing more individualised intervention plans in
renal assessment, which will eventually lead to better
patient outcomes.

Another imperative frontier of renal Al is the integration
of large-scale multimodal data. The current healthcare
systems produce massive amounts of heterogeneous data
such as imaging, laboratory findings, electronic health
records, and omics data. Beam and Kohane emphasised
the potential of using big data and machine learning
together in order to reveal intricate patterns that cannot
be discovered with the help of traditional analytic tools
[39]. Multimodal integration in nephrology has the
potential to offer a more detailed picture of renal disease
through the correlation of structural, functional, and
molecular data and improve the accuracy of diagnoses
and prognostic model building.

Looking ahead, opportunities for next-generation renal
Al systems lie in the development of more holistic and
adaptive models capable of learning from diverse data
streams. Boehm et al. demonstrated that multimodal data
integration using machine learning can significantly
improve risk stratification in complex diseases,
underscoring the value of combining multiple data types
within a unified analytical framework [40]. Applied to
renal health assessment, such systems could support
continuous monitoring, dynamic risk prediction, and
real-time clinical decision support across the entire care
continuum.

Future advances in deep learning—driven renal
assessment will be shaped by innovations in privacy-
preserving learning, precision medicine, and multimodal
data integration. By addressing current limitations and
embracing these emerging directions, next-generation
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renal Al systems have the potential to deliver more
personalized, secure, and clinically impactful solutions
for nephrology practice.

11. Conclusion

This comprehensive review highlights the increased role
of deep learning in improving the renal health
assessment on structural, functional, and clinical levels.
The innovations in the deep learning-based image
analysis have facilitated the correct and automatic
assessment of renal morphology, kidney segmentation,
cyst count and tumour classification. At the functional
level, predictive models have shown high potential in
early identification of acute kidney damage, renal
functionality estimation as well as disease development
projection in chronic kidney disease. Simultaneously,
the combination of deep learning and electronic health
records has enabled the process of fine-tuning of
classifying diseases, risk stratification, and outcome
prediction, enabling more data-driven and personalised
renal care. The potential effects of these developments
to the nephrology and urology practise are significant.
Deep learning systems may supplement clinical
decision-making by enhancing diagnostic accuracy,
allowing earlier intervention, and facilitating
personalised treatment approaches at both ends of the
renal care spectrum, including early disease detection
and renal replacement therapy and transplantation. Such
tools can be implemented in clinical workflows and can
lead to increased efficiency, decreased workload of
clinicians and better patient outcomes. Nevertheless, the
successful implementation requires addressing the
issues of data quality and interpretability, equity and
regulatory controls and promoting significant human-Al
interaction. In the future, deep learning-based renal
health may be taken to a new level by creating reliable,
explainable, and privacy-sensitive systems that utilise
multimodal data and enable precision nephrology. It will
be necessary to continue interdisciplinary partnerships
between clinicians, data scientists and policymakers to
convert technological change into solutions that can
have a clinical impact. This is to be expected as the
challenges are resolved, and deep learning will become
an inseparable part of the renal medicine, forming the
future of kidney disease evaluation and treatment.
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