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Abstract 

Kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), pose a substantial global health 

burden and are associated with high morbidity, mortality, and healthcare costs. Conventional methods for renal health 

assessment are limited by delayed detection, inter-observer variability, and restricted capacity to integrate complex, 

longitudinal data. Recent advances in deep learning have created new opportunities to enhance renal disease assessment 

through data-driven, automated, and scalable approaches. This review aims to evaluate the role of deep learning in 

improving renal health assessment across structural, functional, and clinical domains, with a focus on its potential to 

support early diagnosis, risk stratification, and personalized renal care. A comprehensive narrative review of the literature 

was conducted, focusing on peer-reviewed studies that apply deep learning techniques to renal imaging, functional 

assessment, disease classification, renal replacement therapy, and transplantation. Key challenges related to data quality, 

interpretability, ethical considerations, and clinical implementation were also examined. Deep learning has demonstrated 

strong performance in structural renal assessment, including kidney segmentation, cyst quantification, and tumor 

classification. Functional applications include early prediction of AKI, estimation of renal function decline, and imaging-

based glomerular filtration rate assessment. Integration with electronic health records has enabled improved disease 

classification, risk stratification, and outcome prediction. Emerging applications in dialysis and transplantation show 

promise for optimizing advanced renal care. Deep learning offers significant potential to enhance renal health assessment 

and clinical decision-making. Continued advances in explainability, data integration, and ethical deployment will be 

critical for successful clinical translation and widespread adoption in nephrology practice. 
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1. Introduction 

Kidney diseases pose a significant and increasing 

worldwide population health issue, which has a 

significant morbidity and mortality burden on the 

healthcare system of the world. Chronic kidney disease 

(CKD) occurs in hundreds of millions of patients and is 

characterised by a gradual reduction in renal 

functioning, which results in end-stage renal disease and 

the heightened risk of cardiovascular diseases. 

Moreover, acute kidney injury (AKI) is a common and 

complicated complication of hospitalisation and critical 

illness, and it is commonly a precursor to permanent 

renal failure. Renal disorders are complicated and 

heterogeneous conditions which require precise, timely, 

and thorough methods of kidney health assessment in 

order to enhance patient outcomes and inform clinical 

decision-making. 

Chronic kidney disease is defined as a long-term or 

prolonged condition of abnormal kidney structure or 

functionality beyond three months that has major health 

consequences. Romagnani et al. gave an elaborate 

description of CKD as a multidimensional disease entity 
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that has various etiologies, progressive nature, and 

systemic effects [1]. In the early stages, CKD can be 

asymptomatic and this factor leads to the late diagnosis 

and restricts the possibility of early intervention. Early 

and accurate diagnosis of the disease is crucial because, 

as the renal functionality worsens, patients are more 

likely to develop cardiovascular disease, metabolic 

complications, and premature death. 

The current burden of CKD has grown significantly 

during the last decades due to the ageing population and 

the escalating rates of diabetes, hypertension, and 

obesity. Bikbov et al. have made a thorough study of the 

global, regional and national trends in the burden of 

CKD, which show that all parts of the world are 

experiencing a steady rise in prevalence and mortality 

rates associated with CKD [2]. Their results point to the 

fact that there is a huge geographic difference in the 

disease burden and access to care, especially in low- and 

middle-income nations. These tendencies put increasing 

pressure on healthcare services and highlight the 

necessity of scalable and cost-effective kidney disease 

evaluation and monitoring tools. 

Acute kidney injury is another severe element of renal 

disease burden that is especially present in hospitalised 

and critically ill groups. AKI has been linked to sudden 

decreases in renal function and is linked to a higher rate 

of short-term mortality, extended hospitalisation, and 

high healthcare expenses. Hoste et al. outlined the 

epidemiology of AKI in the world, stating its great 

prevalence in different clinical environments and its 

close correlation with unfavourable outcomes [3]. 

Notably, AKI is not merely an acute phenomenon but 

also a contributor to the further occurrence and 

progression of CKD, which further increases post-renal 

disease effects on the overall patient health. 

Although kidney diseases are very heavy, traditional 

approaches to renal health evaluation have significant 

weaknesses. Conventional biomarkers like serum 

creatinine and estimated glomerular filtration rate give 

indirect and delayed indications of kidney functioning. 

Levey and Coresh pointed out the advantages and 

weaknesses of the existing CKD classification and 

assessment strategies and pointed out that such measures 

might be affected by age, muscle mass, and comorbidity 

[4]. The informative techniques of imaging and biopsy 

are resource-consuming, prone to inter-observer 

variability, and do not always lend themselves to 

repeated or large-scale use. 

Here, the concept of using the most advanced 

computational methods to improve the assessment of 

renal health is gaining traction. The growing access of 

large-scale clinical, imaging, and longitudinal data has 

provided novel opportunities to use data to analyse 

nephrology. Artificial intelligence, and deep learning 

specifically, provides the capability to approximate the 

relationships between complex and non-linear entities in 

high-dimensional data and identify clinically significant 

patterns that might otherwise be inaccessible to 

traditional methods of analysis. These features make 

deep learning a prospective instrument in enhancing the 

process of early detection, risk stratification, and 

longitudinal monitoring of renal disease.  

This review aims to critically analyse the importance of 

deep learning in improving the renal health assessment 

based on the synthesis of existing evidence in structural, 

functional, and clinical areas. This article aims to offer 

an introductory insight into the way deep learning can be 

used to assist in the provision of more accurate, efficient, 

and personalised renal care by reviewing the latest 

developments, problems, and opportunities and laying 

the groundwork towards the improvement of nephrology 

and urology practise. 

 

2. Deep Learning Concepts Relevant to Renal 

Medicine 

Deep learning (DL), a branch of machine learning on 

artificial neural networks with multiple hidden layers, 

has become a paradigm shift in contemporary medical 

research and practise. In contrast to traditional machine 

learning methods which are very dependent on hand 

designed features, deep learning models learn 

hierarchical representations using raw data, which gives 

them better results in complex and high dimensional 

biomedical data. The LeCun et al. seminal work made 

deep learning a paradigm, emphasising its ability to 

capture non-linear relationships, as well as its specific 

applicability to image, signal, and sequential data, which 

is often present in healthcare [5]. 

Convolutional neural networks (CNNs) are also the most 

popular deep learning structures used in medicine. 

CNNs are uniquely tailored to manipulate grid-like data 

like medical images and have shown impressive 

performance in processes like detection, segmentation 

and classification. CNN-based frameworks are 

especially useful in renal medicine to analyse ultrasound 

images, computed tomography (CT) images, magnetic 

resonance imaging (MRI) images, and histopathological 

images. The extensive survey by Litjens et al. 

emphasises that CNNs are superior in medical image 

analysis and strong in extracting clinically significant 

spatial features which frequently outperform human 

performance at individual diagnostic tasks [6]. In 

addition to CNNs, representation learning can be used to 

find latent features that reflect complex patterns of 

diseases without direct annotation, allowing scalable and 

generalizable renal health evaluation. 

Deep learning processes in healthcare are not confined 

to model architecture but are also the whole pipeline, 

including data acquisition and clinical deployment. 

Esteva et al. presented a standardised working process, 

which included data preprocessing, model training, 

model validation, and model testing and prospective 

evaluation in real-world clinical practise [7]. In the renal 

process, such workflow frequently incorporates 

multimodal data, such as imaging, laboratory values, 

and electronic health records. To maintain 

reproducibility and clinical reliability, proper dataset 

curation, missing data, and data leakage prevention are 

necessary. Further, clinically relevant metrics, including 

sensitivity, specificity, area under the receiver operating 

characteristic curve, and calibration, are essential in 

determining the usefulness of the model in the practise 

of nephrology. 

Although deep learning models have impressive 

predictive performance, the black-box nature of deep 
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learning models presents considerable challenges to 

clinical adoption. The interpretability and explainability 

of models are especially important in renal medicine, 

where the results of diagnostic and treatment choices 

have long-term outcomes on patients. Explainable 

artificial intelligence (XAI) approaches seek to offer an 

understanding of how models reach certain predictions 

and thus improve clinician trust and enable regulatory 

acceptance. Samek et al. have examined a wide range of 

explainability methods such as saliency maps, layer-

wise relevance propagation, and feature attribution 

methods, which are being more and more used in 

medical professional areas [8]. Such techniques in renal 

imaging may emphasise anatomy or biomarkers that are 

driving model predictions, and bring algorithmic outputs 

in line with existing clinical reasoning. 

Deep learning offers a solid methodological base to 

support the development of renal health evaluation with 

strong architectures, structured processes, as well as new 

explainability solutions. These are the key ideas that 

should be understood to critically assess the existing 

applications and to inform responsible implementation 

of deep learning models into nephrology and urology 

practise. A schematic overview of the deep learning 

workflow for renal health assessment is illustrated in 

Figure 1. 

 

 
Figure 1. Deep Learning Pipeline for Renal Health Assessment 

 

3. Renal Data Modalities and Sources 

The success of the approaches based on deep learning in 

the context of renal health assessment primarily depends 

on the availability and diversity of underlying data and 

their quality. Renal medicine enjoys a broad spectrum of 

data modalities which offer complementary information 

on kidney structure, function and disease pathology. Of 

them, the medical imaging data represent one of the 

main points of deep learning usage, providing the non-

invasive visualisation of the renal morphology and 

pathology. Erickson et al. pointed out the critical 

importance of imaging modalities which are ultrasound, 

computed tomography (CT), and magnetic resonance 

imaging (MRI), as in machine learning-based medical 

analysis, they are ideally suited to the execution of such 

tasks as segmentation, lesion detection and disease 

classification [9]. The imaging information in 

nephrology is regularly employed to assess the size, 

morphology, perfusion, and the existence of structural 

abnormalities, which makes it especially vulnerable to 

the analysis of convolutional neural networks. 

Besides imaging, critical care and longitudinal clinical 

data are also crucial in the assessment of renal health, 

particularly in the functional assessment and prognosis. 

Electronic health record systems of intensive care units 

and hospital-wide large-scale databases allow 

developing predictive models of acute kidney injury, 

disease progression, and mortality. MIMIC-III database 

was pioneered by Johnson et al. as an openly accessible 

critical care database, which included physiological 

measures (high-resolution), laboratory findings, and 

clinical documentation, all spanning very long periods 



Дослідження / Research 

34 Kidneys Vol. 15, No. 1, 2026 

[10]. These longitudinal data have particular importance 

in modelling time-dependent changes in renal 

functionality and training deep learning-based solutions 

that can predict risks continuously and provide early 

warning, which are critical in the management of acute 

and chronic kidney diseases. 

The information on pathology and radiology can also 

complement renal datasets with micro- and macro-level 

insights into kidney disease. Histopathological slides 

provide comprehensive information about the changes in 

glomerular, tubular, and interstitial, radiological images 

are used to record the structural changes in the organ 

level. Nonetheless, these data sources are very difficult 

to integrate. Shah and Gautam also mentioned several 

diagnostic and technical barriers to implementing 

artificial intelligence in pathology and radiology, such as 

inconsistency in image acquisition protocols, inter-

observer differences in annotation, and non-standardised 

labelling practises [11]. In renal medicine, these issues 

are especially acute as the heterogeneity of the disease 

and minor morphological differences may make it hard 

to train and validate the model. 

The quality of data, heterogeneity, and preprocessing are 

some of the essential factors to consider when designing 

deep learning models to assess the renal condition. Renal 

datasets can be several institutions, imaging devices, and 

clinical settings which can contribute to significant 

differences in data distributions. According to 

Lundervold and Lundervold, strict preprocessing, such 

as normalisation, artefact removal, and data 

augmentation, is necessary to reduce scanner-specific 

biases and enhance model generalizability, especially in 

studies with MRI [12]. Also, lack of data, imbalance of 

classes, and small sample sizes are still an issue in the 

renal research that requires attentive dataset curation and 

validation measures. 

The renal data modalities are a complicated ecosystem 

of imaging, clinical and pathological data. To effectively 

exploit such a wide range of sources, it is necessary not 

only to have sophisticated deep learning architectures 

but also to be careful about data quality and 

harmonisation. Overcoming these issues is a pre-

condition to developing strong, clinically translatable 

deep learning systems in the renal health assessment. 

The major renal data modalities and their associated 

deep learning applications are summarized in Table 1. 

 

Table 1. Renal Data Modalities and Their Applications in Deep Learning–Based Renal Health Assessment 

Data Modality Examples Clinical Purpose Deep Learning Tasks References 

Ultrasound B-mode, Doppler Renal size, 

obstruction 

Segmentation, 

classification 

Erickson et al. [9] 

CT Imaging Contrast-enhanced 

CT 

Structural 

assessment 

Lesion detection Erickson et al. [9] 

MRI Structural & 

functional MRI 

Tissue 

characterization 

Feature learning Lundervold and 

Lundervold  [12] 

Histopathology Biopsy slides Cellular-level 

diagnosis 

Image quantification Shah and Gautam  [11] 

Clinical/EHR 

Data 

Labs, vitals Longitudinal 

monitoring 

Temporal modeling Johnson et al. [10] 

 

4. Deep Learning for Structural Renal Assessment 

The structural evaluation of the kidneys is a fundamental 

part of the process of renal diagnosis and treatment since 

most renal diseases appear in the form of anatomical and 

morphological alterations. Deep learning has become a 

potent instrument of automation and upgrading of the 

renal structure analysis, especially because it can process 

complex images and histopathological data with high 

accuracy and consistency. Automated kidney and cyst 

segmentation is one of the most outstanding applications 

in this field and it is necessary to quantify the disease 

burden and progression. Kline et al. showed that 

semantic segmentation models based on deep learning 

are effective in detecting and localising kidney cysts in 

magnetic resonance images of patients with autosomal-

dominant polycystic kidney disease with an acceptable 

precision level that is challenging to obtain manually 

[13]. 

In addition to gross anatomical imaging, deep learning 

has facilitated the analysis of renal histopathology by 

allowing objective assessment of tissue-level changes in 

high amounts of tissue. Histopathological examination 

has been the gold standard of diagnosis of most of the 

renal diseases, but is time-consuming and prone to inter-

observer variability. Bouteldja et al. used deep learning-

based segmentation and quantification methods on 

experimental kidney histopathology and showed neural 

networks can be reliable in detecting and quantifying 

essential structural features, glomeruli, tubules, and 

fibrotic areas [14]. These methods do not only enhance 

reproducibility, but also enable large-scale quantitative 

analyses which can reveal hidden pathological trends, 

applicable to disease mechanisms and treatment 

response. 

Deep learning has demonstrated a great potential in renal 

mass classification through cross-sectional imaging 

methods like contrast-enhanced computed tomography 

as well. Proper distinction between benign and 

malignant kidney lesions is instrumental in the provision 

of clinical decision-making and the prevention of 

avoidable treatments. Zabihollahy et al. proposed a 

convolutional neural network-based model with 

decision fusion method to classify solid renal masses on 

CT images, and with high diagnostic accuracy [15]. 

Radiologists can be assisted with such models as they 

offer high-quality, data-driven evaluations of renal 

tumours, especially in complicated or doubtful cases. 

Notably, recent works have transcended beyond the 

proof-of-concept research to the clinical implementation 

of deep learning models in structural renal evaluation. 
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Goel et al. published the clinical application of a deep 

learning-based kidney segmentation framework in 

polycystic kidney disease MRI, and it was integrated 

into the regular clinical practise [16]. This paper has 

emphasised essential factors in successful 

implementation such as robustness of models with 

different imaging protocols, easy-to-use interfaces, and 

compatibility with the current radiology systems. 

Clinical use is an important milestone in the process of 

transferring deep learning innovations to patient care. 

The role of deep learning in improving the structural 

renal evaluation has significantly advanced on multiple 

scales, such as organ-level imaging to tissue-level 

histopathology. The objective quantification, automated 

segmentation and reliable classification of the renal 

structures are enhancing diagnostic accuracy and 

efficiency and minimising variations among the 

observers. With the continuous maturation of clinically 

deployed systems, deep learning will become an even 

more inseparable part of the structural assessment of the 

renal health. 

 

5. Deep Learning for Functional Renal Assessment 

The functional assessment of kidneys is critical in 

determining the severity of the disease, treatment 

decisions, and long-term prognosis among patients with 

renal diseases. The conventional renal function indices, 

including serum creatinine and estimated glomerular 

filtration rate (eGFR) have shortcomings of slow 

responsiveness and inter-subject deviation. The 

increasing interest in deep learning-based approaches as 

having the capability to model complex, nonlinear 

relationships in high-dimensional clinical data and to 

offer earlier and more valid functional assessment has 

thus increased. A major use is the forecasting of cellular 

renal disease. Chen et al. created and externally tested an 

ensemble machine learning model that combines various 

clinical variables to forecast long-term worsening of 

renal status in patients with CKD with better predictive 

accuracy compared to traditional statistical models [17]. 

Another area of deep learning that can be of great 

clinical use is the early diagnosis of acute kidney injury 

(AKI). SKI usually leads to a rapid development and is 

linked to higher morbidity and mortality, especially in 

patients who are hospitalised and are in critical 

conditions. Koyner et al. have outlined the creation of an 

inpatient AKI prediction model that was developed 

based on routinely gathered electronic health record data 

using machine learning and allowed risk stratification 

before serum creatinine levels had a chance to rise 

dramatically [18]. Clinicians can use such predictive 

systems to administer preventive interventions earlier, 

and this may help reduce renal damage and enhance 

patient outcomes. These models highlight the fact that 

deep learning can discern small time patterns in 

physiological and laboratory data that predict clinically 

known AKI. 

Continuous and real-time functional monitoring has 

developed as one of the most important developments 

brought about by deep learning based on early detection. 

Instead of using the static or intermittent assessment, 

continuous prediction models can dynamically update 

risk estimates with the emergence of new data. Tomašev 

et al. presented a deep learning-based method of 

predicting future AKI continuously that can be used in 

clinical practise, showing its ability to provide real-time 

warning hours to days before clinical onset [19]. This 

renal care shift is a paradigm shift of reactive to 

proactive and demonstrates why deep learning has 

potential to help timely clinical decision-making and aid 

patient safety in high-risk environments. 

Besides the data-driven functional prediction, deep 

learning has further widened the range of renal function 

assessment by imaging-based estimation methods. 

Traditional eGFR estimates can only give a worldwide 

estimate of kidney functionality and fails to recognise 

inter-kidney variability and localised impaired 

functionality. Bao et al. suggested a deep learning 

framework to estimate the single-kidney glomerular 

filtration rate by imaging data in a wide range of renal 

diseases and provided a non-invasive and more granular 

evaluation of renal functioning [20]. These methods are 

especially helpful with a unilateral disease, preoperative 

planning and post-transplant evaluation. 

These developments show the increased use of deep 

learning in functional renal evaluation. Deep learning 

technologies are transforming the process of renal 

function assessment and treatment in a clinical 

environment, allowing to identify injury earlier, monitor 

renal status continuously, and estimate kidney function 

using innovative imaging methods. A summary of deep 

learning applications in structural and functional renal 

assessment is presented in Table 2. 

 

Table 2. Deep Learning Applications Across Structural and Functional Renal Domains 

Assessment 

Domain 

Clinical Task Data 

Type 

Deep Learning 

Approach 

Clinical Utility Key References 

Structural 

Kidney 

segmentation 

MRI, CT CNN-based 

segmentation 

Disease burden 

quantification 

Kline et al [13]; 

Goel et al. [16] 

Renal mass 

classification 

CT CNN with 

decision fusion 

Tumor 

characterization 

Zabihollahy et al. 

[15] 

Histopathology 

analysis 

Biopsy 

images 

DL-based image 

analysis 

Objective tissue 

assessment 

Bouteldja et al. [14] 

Functional 

CKD progression 

prediction 

Clinical 

data 

Ensemble 

ML/DL 

Early intervention 

planning 

Chen et al.  [17] 

AKI early 

detection 

EHR data Temporal DL 

models 

Real-time risk alerts Koyner et al. [18]; 

Tomašev et al. [19] 

GFR estimation Imaging 

data 

CNN regression 

models 

Non-invasive 

function assessment 

Bao et al. [20] 
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6. Disease Classification and Risk Stratification 

The key to personalised renal care is accurate disease 

classification and risk stratification because patients 

with kidney disease are highly heterogeneous in their 

disease progression, response to treatment, and clinical 

outcome. The traditional classification systems which 

are usually founded on fixed clinical cutoffs can be 

inadequate to record the interplay among demographic, 

biochemical, and comorbid variables that determine the 

courses of renal diseases. There has been an increased 

adoption of machine learning and deep learning 

approaches to enhance risk prediction and to facilitate a 

more careful stratification of patients. Lerner et al. 

conducted a review of modern risk predictive models of 

chronic kidney disease progression and found that to 

predict high-risk patients and implement an intervention 

strategy in time, it is essential to consider a combination 

of various clinical factors [21]. 

In addition to chronic kidney disease, stratification with 

machine learning has demonstrated special potential in 

the acute kidney injury, in which it is essential to identify 

high-risk patients as early as possible. Zhang et al. used 

machine learning to forecast volume responsiveness in 

oliguric acute kidney injury patients in the intensive care 

unit and found out that data-driven models could be 

more effective than traditional clinical parameters in 

ranking patients by physiological response and risk [22]. 

This stratification allows making decisions on the 

treatment of each person more individually, which may 

prevent complications related to the management of 

fluids and increase short-term outcomes in critically ill 

populations. 

The mainstream implementation of electronic health 

records (EHRs) has increased the pace of deep learning 

in nephrology even further by promoting the use of deep 

learning in the classification of diseases and the 

evaluation of risks. Longitudinal and multimodal data 

including laboratory results, medications, vital signs and 

clinical notes can be found in EHRs, creating a rich 

substrate on which predictive modelling can be 

performed. A deep learning-based method of risk 

prediction based on electronic health records was 

presented by Cheng et al., and it was shown that neural 

networks can automatically learn more complex 

representations of features based on large-scale clinical 

data [23]. These methods can be used in renal medicine 

to support ongoing risk evaluation at various levels of 

care, including outpatient management of CKD and the 

inpatient monitoring of AKI. 

Deep learning can perform phenotyping of large 

populations of patients and subgroups on a large scale, 

beyond a disease nomenclature and more specifically 

characterise clinical phenotypes. Landi et al. have shown 

how deep representation learning can be used to identify 

latent patient subgroups in electronic health records and 

scale stratification without depending on predefined 

labels [24]. This method can be used in the setting of 

renal disease to identify previously unknown phenotypes 

related to specific progression patterns, responses to 

treatment, or the risk of complication. This type of data-

based phenotyping has been used to enable precision 

nephrology approaches, in which interventions are not 

applied to all patients but to particular subgroups of 

patients. 

The disease classification and risk stratification based on 

deep learning have profound benefits compared to 

traditional methods because they can represent the high-

dimensional and complicated relationships present in 

clinical data. These approaches are helping to increase 

the individualization and effectiveness of renal care 

through better prediction of CKD progression, more 

precise stratification of AKI patients, and scalable 

analysis of electronic health records.  

 

7. Applications in Renal Replacement Therapy and 

Transplantation 

Renal replacement therapy and kidney transplantation 

are more advanced levels of renal care, in which clinical 

judgement is complicated and outcomes vary depending 

on a vast array of patient-, donor-, and treatment-related 

variables. Artificial intelligence and specifically 

machine learning and deep learning methods have also 

been used more and more to aid in decision-making in 

these environments by enhancing outcome prediction 

and risk stratification. Among the most important ones, 

it can be listed the prediction of long-term results after 

kidney transplantation. Badrouchi et al. showed that the 

multidimensional clinical variables could be effectively 

combined with the help of artificial intelligence-based 

models to predict long-term transplant outcomes and 

provide greater prognostic accuracy than traditional 

statistical methods [25]. These models can be used to 

assist in customising post-transplant care and 

maximising the graft function in the long-term. 

Another important aspect of transplant medicine is the 

accurate modelling of graft failure and prognosis of 

survival risk because early detection of patients at risk of 

developing graft losses can be used to provide 

surveillance measures and treatment. A systematic 

review of kidney transplantation graft failure risk 

prediction models was performed by Kaboré et al., 

which indicates a potential and weaknesses of the 

current methods [26]. Their results highlight the 

importance of the strong, tested machine learning 

models that can help to model intricate interplay of 

immunological, clinical, and demographic variables. 

The issues of non-linear relationships that deep learning 

methods can learn make them especially applicable to 

the specified challenges and contribute to better graft 

survival predictions. 

The risk of mortality after the commencement of renal 

replacement therapy is unacceptable in the situation of 

dialysis, particularly in the first period of the treatment. 

Machine learning models are created to recognise 

patients who are at high risk of dying shortly to allow 

targeted interventions and better care planning. Rankin 

et al. introduced a model of machine learning to predict 

mortality in 90 days after dialysis start and it proved to 

be more effective in comparison with traditional risk 

assessment instruments [27]. Timely clinical decision-

making, such as dialysis modality, dialysis intensity, or 

supportive care may be achieved by identifying high-

risk patients early in their course. 
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In addition to individual predictive tasks, artificial 

intelligence is being implemented more and more in 

larger decision support systems in renal replacement 

therapy. Badrouchi et al. suggested a holistic machine 

learning system predicting long-term graft survival 

following kidney transplantation with a focus on the 

clinical processes of predictive output integration [28]. 

These frameworks are not only expected to produce 

correct predictions, but also provide actionable insights 

that can be easily interpreted by clinicians. AI-based 

decision support systems can enhance the outcomes 

throughout the spectrum of renal replacement therapy by 

assisting in making decisions associated with donor-

recipient matching, treatment planning, and follow-up 

strategies. 

Deep learning applications in renal replacement therapy 

and transplantation are examples of how artificial 

intelligence is increasingly being applied in managing 

complex, high-stakes clinical scenarios. AI-based 

solutions provide a promising solution to the idea of 

improving the personalised care and resource use in the 

management of advanced renal disease through better 

prediction of transplant outcomes, graft survival, and 

dialysis-related mortality. Representative deep learning 

models applied across renal imaging, functional 

assessment, dialysis, and transplantation are 

summarized in Table 3. 

 

Table 3. Representative Deep Learning Models in Renal Health Assessment 

Clinical Domain Application Data Type Model Type Key Outcome References 

Structural 

imaging 

Kidney & cyst 

segmentation 

MRI CNN Accurate 

volumetric 

assessment 

Kline et al [13]; Goel 

et al.  [16] 

Histopathology Tissue 

quantification 

Biopsy 

images 

CNN-based 

analysis 

Reduced observer 

variability 

Bouteldja et al. [14] 

Tumor 

assessment 

Renal mass 

classification 

CT CNN + 

fusion 

Improved 

diagnostic 

accuracy 

Zabihollahy et al. [15] 

Functional 

assessment 

CKD progression 

prediction 

Clinical data Ensemble 

ML/DL 

Early risk 

identification 

Chen et al.  [17] 

Acute care AKI early 

detection 

EHR Temporal 

DL 

Advance warning 

of AKI 

Koyner et al. [18]; 

Tomašev et al. [19] 

Dialysis Mortality 

prediction 

Registry data ML models Short-term 

mortality risk 

Rankin et al.  [27] 

Transplantation Graft survival 

prediction 

Multicenter 

data 

ML/DL 

models 

Long-term 

outcome prediction 

Badrouchi et al. [25]; 

Badrouchi et al. [28] 

 

8. Clinical Translation and Implementation 

A major challenge in the process of translating deep 

learning systems out of the research setting to everyday 

nephrology practise is still present, even though the 

technical performance is increasingly being 

demonstrated. There are several obstacles to clinical 

implementation, such as the limitation of data quality, 

the inability to generalise the results in different 

healthcare environments, and regulatory approval and 

patient safety concerns. Kelly et al. pointed out the major 

barriers to clinical impact of artificial intelligence and 

included such issues as bias in algorithms, lack of 

external validation, and the mismatch between the 

development of the model and real-world clinical 

requirements [29]. Such issues are exacerbated by 

heterogeneity of the diseases and differences in clinical 

workflow in institutions in renal medicine. 

Human-AI cooperation is becoming an indispensable 

condition of successful implementation of deep learning 

tools in the practise of nephrology. Instead of 

substituting clinicians, artificial intelligence systems are 

best used when created to support human expertise by 

giving decision support and actionable advice. Topol 

explained the idea of high-performance medicine, 

whereby human judgement and artificial intelligence 

collaborate to increase the accuracy of the diagnosis, its 

efficiency, and patient outcomes [30]. The approach to 

collaboration is especially pertinent in the field of 

nephrology since clinical judgments may frequently 

involve the delicate interpretation of patient history, lab 

trends, and imaging results beyond the output of 

algorithms. 

Real-world implementation studies offer useful 

information on the practical implications of deploying 

deep learning models into clinical practise. The article 

by Sendak et al. describes the implementation of a deep 

learning-based sepsis prediction system in regular 

clinical practise and shows issues concerning clinician 

engagement, workflow interference, and model 

maintenance [31]. Despite the sepsis focus, the insights 

gained during the study are very applicable to the renal 

context, where the provision of timely alerts and 

prediction of risk should be integrated into the current 

electronic health record systems to prevent the problem 

of alert fatigue and make clinical use. Interdisciplinary 

collaboration of clinicians, data scientists and health 

system leaders is crucial in such studies during 

implementation. 

Clinical decision support systems that run on deep 

learning are essential to assess their safety, effectiveness, 

and long-term adoption. Magrabi et al. raised 

methodological issues of evaluating artificial 

intelligence-based clinical decision support systems, 

such as the necessity to develop stringent evaluation 

models that consider the human-system interaction and 

changing clinical circumstances [32]. In nephrology, the 

assessment should not be limited to predictive accuracy, 

but it should also involve clinical impact, workflow, and 
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patient outcome measures. Performance drift and 

unwanted consequences may also be detected over time 

through continuous monitoring and post-deployment 

auditing. 

Clinical translation and implementation are important 

processes of achieving the promise of deep learning in 

renal health assessment. The deployment barriers, 

effective human-AI collaboration, learning about the 

real-world implementation experiences, and critical 

evaluation of clinical decision support systems are 

critical in ensuring that deep learning technologies can 

provide meaningful and sustainable benefits to 

nephrology practise. The integration of deep learning 

applications across the renal care continuum is 

summarized in Figure 2. 

 

 
Figure 2. Clinical Integration of Deep Learning Across the Renal Care Continuum 

 

9. Challenges, Ethical Considerations, and 

Limitations 

Even though deep learning in the renal health assessment 

is increasingly promising, there are major challenges and 

ethical issues that need to be addressed to foster safe, 

equitable, and responsible clinical practise. The problem 

of algorithmic bias is one of the most urgent ones that 

may occur when training data fails to adequately 

represent different populations of patients. Obermeyer 

emphasised the ability of biassed healthcare algorithms 

to reproduce and even increase existing health 

disparities especially when socioeconomic and racial 

factors are not sufficiently considered in the model 

design [33]. Such biases in renal medicine can lead to 

disproportionate risk prediction or slower intervention of 

underrepresented groups, which highlights the 

importance of developing models fairly and validating 

them with external data in a diverse range of cohorts. 

The issue of regulatory and legal hurdles also makes the 

implementation of artificial intelligence in medicine 

more complex. Contrary to conventional medical 

devices, deep learning systems are not static but can 

change with time as they are updated or retrained on new 

data. Minssen et al. reviewed regulatory reactions to 

medical machine learning, highlighting the challenge of 

the application of currently existing laws to adaptive AI 

technologies [34]. Regulatory clarity is critical in 

nephrology, where AI-driven tools are likely to impact 

such vital decisions as dialysis or transplant initiation, as 

this field is likely to expose patients to potential harm, 

liability, and non-adherence to healthcare practises. It is 

also a challenge to set up clear guidelines that would be 

used to approve, monitor and undertake post-market 

surveillance. 

Clinician trust and acceptance of AI-assisted tools also 

focus on explainability and transparency. Most deep 

learning models are black-box and thus clinicians find it 

hard to comprehend the way predictions are made. The 

model-agnostic explainability methods presented by 

Ribeiro et al. enable the provision of interpretable 

explanations to individual predictions to improve the 

bridging of the gap between clinical reasoning and 

algorithmic output [35]. Explainable models can be used 

to boost clinician confidence in renal health assessment 

by emphasising features, which may include laboratory 

trends or imaging regions, that lead to predictions. Even 

highly accurate models can be resisted by the clinicians 

and rarely adopted in practise without sufficient 

transparency. 

Ethical responsibility and accountability are other issues 

in AI-assisted care. In case an AI system is involved in a 

clinical decision that harms patients, it becomes tricky to 

ascertain the responsibility of the clinicians, the 

developers, and the healthcare institutions. Naik et al. 

addressed the issue of legal and ethical aspects of 

accountability and liability in healthcare AI, pointing to 

the significance of the roles definition and the 

development of the governance frameworks [36]. In 

nephrology, where intervention choices may have 

prolonged consequences, to be morally used, AI systems 

should serve as tools and not as decision-makers, and 

clinicians need to stay in charge of patient care. 

Although the opportunities of deep learning to improve 

the process of renal health assessment are significant, it 

has limited implementation due to its problem of bias, 

regulation, interpretability, and accountability. To 

overcome these shortcomings, it is critical to consider 

these technologies in terms of ethical design, transparent 

assessment, and solid governance frameworks to make 

sure that AI technologies are implemented in a 

responsible and fair way in the field of renal medicine. 
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10. Future Directions in Deep Learning–Driven 

Renal Assessment 

Since deep learning is still in its infancy, there are a 

number of new trends that will define the future of the 

renal health assessment systems. The use of federated 

and privacy-preserving learning models is one of the 

most promising ones, as it allows training models 

collaboratively across multiple institutions without 

sharing the raw data of patients. Kaissis et al. showed 

that federated learning methods have the potential to 

preserve data privacy and provide strong performance in 

medical images, which is vital in the context of data 

security and the ability to comply with regulatory 

policies [37]. Such frameworks may be useful in 

nephrology, where patient data is very sensitive and may 

be siloed across healthcare systems, yet still support the 

development of large-scale, multicenter models and 

maintain patient confidentiality. 

It is also anticipated that deep learning will be the key to 

the improvement of precision and personalised 

nephrology. The conventional renal care tends to be 

based on the population-wide rules that are not always 

able to consider the differences in disease development 

and response to treatment. Martel et al. have talked about 

the use of artificial intelligence in precision medicine 

and stress that it could personalise diagnostic and 

therapeutic plans to the profiles of the individual patient 

[38]. Deep learning models that are capable of 

combining genetic, clinical, and environmental data may 

allow predicting disease progression more precisely and 

providing more individualised intervention plans in 

renal assessment, which will eventually lead to better 

patient outcomes.  

Another imperative frontier of renal AI is the integration 

of large-scale multimodal data. The current healthcare 

systems produce massive amounts of heterogeneous data 

such as imaging, laboratory findings, electronic health 

records, and omics data. Beam and Kohane emphasised 

the potential of using big data and machine learning 

together in order to reveal intricate patterns that cannot 

be discovered with the help of traditional analytic tools 

[39]. Multimodal integration in nephrology has the 

potential to offer a more detailed picture of renal disease 

through the correlation of structural, functional, and 

molecular data and improve the accuracy of diagnoses 

and prognostic model building. 

Looking ahead, opportunities for next-generation renal 

AI systems lie in the development of more holistic and 

adaptive models capable of learning from diverse data 

streams. Boehm et al. demonstrated that multimodal data 

integration using machine learning can significantly 

improve risk stratification in complex diseases, 

underscoring the value of combining multiple data types 

within a unified analytical framework [40]. Applied to 

renal health assessment, such systems could support 

continuous monitoring, dynamic risk prediction, and 

real-time clinical decision support across the entire care 

continuum. 

Future advances in deep learning–driven renal 

assessment will be shaped by innovations in privacy-

preserving learning, precision medicine, and multimodal 

data integration. By addressing current limitations and 

embracing these emerging directions, next-generation 

renal AI systems have the potential to deliver more 

personalized, secure, and clinically impactful solutions 

for nephrology practice. 

 

11. Conclusion 

This comprehensive review highlights the increased role 

of deep learning in improving the renal health 

assessment on structural, functional, and clinical levels. 

The innovations in the deep learning-based image 

analysis have facilitated the correct and automatic 

assessment of renal morphology, kidney segmentation, 

cyst count and tumour classification. At the functional 

level, predictive models have shown high potential in 

early identification of acute kidney damage, renal 

functionality estimation as well as disease development 

projection in chronic kidney disease. Simultaneously, 

the combination of deep learning and electronic health 

records has enabled the process of fine-tuning of 

classifying diseases, risk stratification, and outcome 

prediction, enabling more data-driven and personalised 

renal care. The potential effects of these developments 

to the nephrology and urology practise are significant. 

Deep learning systems may supplement clinical 

decision-making by enhancing diagnostic accuracy, 

allowing earlier intervention, and facilitating 

personalised treatment approaches at both ends of the 

renal care spectrum, including early disease detection 

and renal replacement therapy and transplantation. Such 

tools can be implemented in clinical workflows and can 

lead to increased efficiency, decreased workload of 

clinicians and better patient outcomes. Nevertheless, the 

successful implementation requires addressing the 

issues of data quality and interpretability, equity and 

regulatory controls and promoting significant human-AI 

interaction. In the future, deep learning-based renal 

health may be taken to a new level by creating reliable, 

explainable, and privacy-sensitive systems that utilise 

multimodal data and enable precision nephrology. It will 

be necessary to continue interdisciplinary partnerships 

between clinicians, data scientists and policymakers to 

convert technological change into solutions that can 

have a clinical impact. This is to be expected as the 

challenges are resolved, and deep learning will become 

an inseparable part of the renal medicine, forming the 

future of kidney disease evaluation and treatment. 
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