

S. Elavarasan^{1*}, Dr. K. Soundararajan², Suryanarayana Reddy Kovvuri³, Rakesh Venuturumilli⁴, Anita M⁵, Kiruthika Naganathan⁶, S. T. Gopukumar⁷

¹* Associate Professor, Department of Community Medicine, Specialization in Research Methodology & Biostatistic, Sri Sairam Homoeopathy Medical College and Research Centre, West Tambaram, Chennai -44, Tamil Nadu, India, Email Id: dr.s.elavarasan@gmail.com, Orcid Id : 0000-0001-7317-4309

²Professor, Department of Orthopedics, Specialization: Orthopedics, Vinayaka Mission's Kirupananda Variyar Medical College & Hospitals, Salem (Vinayaka Mission's Research Foundation), Pin code : 636 308, India, Email Id: ksoundar25@gmail.com, Orcid Id: 0000-0001-7364-6732

³Post graduate, Department of General Medicine, Specialization in Medicine, Saveetha medical college, Chennai, Pin code – 602105, INDIA, Email Id: dr.surya9999@gmail.com, Orcid id - 0009-0001-7636-7138

⁴Clinical Director & Group Head, Department of Critical Care & ECMO, Specialisation in Anesthesia and critical care, NASA group of Hospitals, Hyderabad, Telangana – 500007, India, Email Id: rakesh.mbbbs2004@gmail.com, Orchid - <https://orcid.org/0000-0001-6843-8496>

⁵Professor, Department of Public Health Dentistry, Specialization in Public Health Dentistry Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, Pin code : 600100, India, Email Id: phdsbdch@gmail.com, ORCID ID: 0009-0008-4825-5973

⁶Assistant Professor, Department of Microbiology, Specilaization in Microbiology, Mahalashmi Women's College of Arts & Science, Avadi, Tamil Nadu 600071, Email Id: krithi.karthick05@gmail.com, Orchid ID: 0009-0008-2617-067X

⁷Nanobioinformatics Unit, Department of General Surgery, Specialization in Nanotechnology and Bioinformatics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India, Email Id: gopukumar@live.com, Orcid Id: <https://orcid.org/0000-0001-8160-2414>

Comparative Evaluation of Renoprotective Drug Regimens in Patients With Early-Stage Diabetic Kidney Disease

For citation: Kidneys. 2026;15(1): 88-96. Acceptance- 05/12/2025 Received- 04/11/2025

doi: 10.65327/kidneys.v15i1.602

Abstract

A conceptual framework is presented to compare the mechanisms and theoretical effects of major renoprotective drug regimens used in the early stages of diabetic kidney disease. The condition develops through interconnected hemodynamic, metabolic, inflammatory, and fibrotic processes, and the therapeutic agents examined here influence different components of these pathways. The framework brings together established scientific knowledge on drug actions and the biological factors that drive early renal injury, offering a structured perspective on how each therapy may contribute to renal protection. Emphasis is placed on the importance of early therapeutic intervention, since kidney damage frequently begins before measurable declines in kidney function appear. The analysis also highlights the potential value of combining therapeutic agents to address multiple disease pathways at once. Overall, the framework supports improved treatment decision-making, encourages personalized therapeutic strategies, and identifies future research needs for empirical validation and comparative assessment of integrated drug regimens for early diabetic kidney disease.

Keywords: diabetic kidney disease, renoprotective therapy, drug mechanisms, conceptual framework, early intervention

1. Introduction

Diabetes mellitus continues to rise globally and remains a major cause of morbidity due to its long-term microvascular complications, among which diabetic kidney disease (DKD) is the most significant contributor to chronic kidney disease progression and renal failure¹. As diabetes prevalence increases, the number of individuals developing early-stage DKD has

also grown substantially, emphasizing the need for timely intervention to prevent further renal decline². Early-stage DKD is particularly critical because pathological alterations often begin long before detectable decreases in glomerular filtration rate, making early identification and treatment essential for delaying or halting disease progression³. Furthermore, global epidemiological data indicate that diabetic

© 2026. The Authors. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, CC BY, which allows others to freely distribute the published article, with the obligatory reference to the authors of original works and original publication in this journal.

For correspondence: S. Elavarasan. Associate Professor, Department of Community Medicine, Specialization in Research Methodology & Biostatistic, Sri Sairam Homoeopathy Medical College and Research Centre, West Tambaram, Chennai -44, Tamil Nadu, India, Email Id: dr.s.elavarasan@gmail.com, Orcid Id : 0000-0001-7317-4309

Full list of authors information is available at the end of the article.

individuals have a substantially higher likelihood of progressing to end-stage renal disease compared with non-diabetic populations, highlighting the disproportionate burden of renal complications associated with diabetes⁴.

The pathophysiology of early-stage DKD involves several interconnected mechanisms that emerge early in the course of diabetes. Hyperglycemia-induced renal hyperfiltration, intraglomerular hypertension, and RAAS activation are considered the central drivers of early renal injury⁵. These processes promote progressive extracellular matrix accumulation, glomerulosclerosis, and alterations in glomerular permeability. As chronic inflammation and oxidative stress amplify mitochondrial dysfunction and impair renal cellular integrity, early structural changes begin to manifest, often preceding measurable clinical deterioration^{6,7}. Emerging evidence also points to dysregulated lipid metabolism, nuclear receptor dysfunction, and mitochondrial abnormalities as important contributors to renal cellular stress in diabetes, enhancing susceptibility to progressive kidney damage⁸. Tubuloglomerular feedback disruption further exacerbates glomerular workload, contributing to early albuminuria and accelerating long-term renal decline³. Multiple renoprotective drug classes have been utilized to mitigate these pathophysiological disturbances. ACE inhibitors and ARBs have been long-established as foundational therapies due to their ability to lower intraglomerular pressure, reduce albuminuria, and slow the progression of early renal damage⁹. More recent therapeutic developments, such as SGLT2 inhibitors, have demonstrated significant renoprotective effects independent of glycemic control, making them valuable additions in the management of DKD across various stages⁶. GLP-1 receptor agonists have shown benefits in reducing oxidative stress, improving metabolic parameters, and exerting indirect renal protective effects, while newer agents such as finerenone target mineralocorticoid receptor-mediated inflammatory and fibrotic pathways, thereby providing complementary mechanisms in early DKD intervention⁷.

Despite the availability of these therapeutic options, current literature often evaluates drug regimens individually, lacking a comparative mechanistic analysis that integrates their roles within the early DKD pathophysiological framework. Most clinical studies focus on drug-specific outcomes without establishing a unified understanding of how these medications interact with distinct pathways involved in early DKD progression¹⁰. Moreover, existing guidelines underscore the importance of multifaceted pharmacological approaches, yet they do not provide a comprehensive conceptual model that maps these regimens onto the biological processes driving early renal injury^{6,7}. This creates a significant gap in clinical practice, where therapeutic decisions may be influenced by fragmented or drug-specific evidence rather than a holistic mechanistic understanding.

Clinical practice lacks an integrated conceptual framework that compares how major renoprotective drug regimens interact with and influence early-stage DKD pathophysiological pathways. To develop a

unified conceptual framework that systematically compares ACE inhibitors, ARBs, SGLT2 inhibitors, GLP-1 receptor agonists, and finerenone based on their mechanistic and theoretical effects in early-stage DKD.

Objectives:

1. To analyze and compare the mechanistic pathways through which major renoprotective drug classes affect early-stage DKD progression
2. To construct an integrated conceptual framework illustrating the theoretical renoprotective roles and comparative benefits of these drug regimens in early DKD

2. Methodology

The present study adopts a conceptual framework methodology to synthesize mechanistic pathways, therapeutic mechanisms, and theoretical interactions among major renoprotective drug regimens used in early-stage diabetic kidney disease (DKD). A conceptual approach is appropriate when the objective is to integrate diverse knowledge sources, unify theoretical constructs, and develop a structured model that explains complex biomedical phenomena without relying on empirical datasets. Conceptual frameworks are particularly valuable when the field contains extensive but fragmented evidence that requires systematic organization to guide future research and clinical practice¹¹. Given that DKD involves multiple overlapping biological pathways and drug classes that act through distinct yet interrelated mechanisms, a conceptual methodology offers a rigorous structure for integrating these diverse dimensions into a cohesive explanatory model.

2.1 Justification of Conceptual Approach

The choice of a conceptual framework is justified by the study's primary aim to compare the mechanistic roles of renoprotective therapies and map them onto early DKD pathophysiology. Conceptual frameworks assist in clarifying abstract constructs, refining theoretical boundaries, and establishing logical connections between complex clinical variables¹². Unlike empirical designs, conceptual studies allow for the synthesis of pharmacological mechanisms, trial evidence, and pathophysiological understanding without requiring primary data collection, making this approach suitable for the theoretical comparison of renoprotective regimens acting upon early renal injury pathways.

2.2 Sources of Evidence

This framework is built using authoritative sources, including high-impact clinical trials, KDIGO guidelines, mechanistic studies on DKD, and pharmacological literature. Conceptual synthesis involves gathering evidence from diverse and credible references to construct a robust theoretical model¹³. These sources collectively inform the pathways of glomerular hemodynamics, metabolic modulation, inflammation, oxidative stress, and fibrosis. They also provide drug-specific mechanistic insights for ACE inhibitors, ARBs, SGLT2 inhibitors, GLP-1 receptor agonists, and finerenone. The integration of these sources ensures that the conceptual framework is

grounded in established biomedical science and clinical guidance.

2.3 Theoretical Synthesis Method

The methodology follows a structured synthesis process involving the identification, categorization, and integration of key theoretical constructs. According to established conceptual analysis techniques, effective framework development requires iterative refinement, pattern identification, and the transformation of dispersed knowledge into a meaningful structure¹⁴. In this study, theoretical synthesis involved: extracting mechanistic elements from literature; grouping mechanisms into thematic domains such as hemodynamic, metabolic, anti-inflammatory, and antifibrotic pathways; and establishing logical relationships between drug actions and DKD progression mechanisms. This structured analysis enabled the formulation of a coherent model illustrating how different drug regimens target specific disease pathways.

2.4 Criteria for Integrating Mechanisms and Pathways

The integration process applied the following criteria:

1. **Biological relevance**, ensuring that only mechanisms with demonstrated influence on early DKD physiology were included.
2. **Mechanistic clarity**, selecting pathways that clearly align with pharmacological actions.
3. **Theoretical consistency**, prioritizing evidence that supports internal alignment among constructs.
4. **Clinical applicability**, including only mechanisms that have recognized implications for therapeutic decision-making.

These criteria are consistent with established standards for conceptual review and synthesis¹⁵.

2.5 Approach to Comparative Evaluation

Comparative analysis within the framework was conducted by mapping drug mechanisms onto the identified early DKD pathways. Each drug class was evaluated based on its theoretical impact on hyperfiltration, RAAS activation, oxidative stress, inflammation, metabolic dysregulation, and fibrosis. This allowed the construction of a comparative conceptual model rather than a data-driven statistical comparison.

2.6 Methodological Limitations

As a conceptual study, this methodology does not involve empirical testing, statistical analysis, or real-world outcome measurement. Therefore, conclusions drawn are theoretical in nature and require validation through clinical research. Additionally, interpretation depends on the availability and quality of existing literature, and emerging evidence may further refine or expand the conceptual constructs outlined.

3. Conceptual Framework Development

3.1 Foundations of the Framework

The conceptual framework for early-stage diabetic kidney disease (DKD) is grounded in the theoretical

understanding of how hyperglycemia induces progressive renal structural and functional alterations. Early DKD progression is characterized by extracellular matrix expansion, glomerular basement membrane thickening, mesangial hypertrophy, and podocyte dysfunction, which collectively drive microvascular injury and albuminuria¹⁶. Histopathological analyses further highlight the continuity and interplay of these abnormalities, demonstrating gradual morphological deterioration as metabolic and hemodynamic stress accumulate over time¹⁷. In parallel, endothelial glycocalyx depletion and impaired vascular integrity contribute to albumin leakage and altered glomerular permeability, reinforcing early glomerular vulnerability¹⁸.

Renoprotective agents act upon these intertwined mechanisms through hemodynamic, metabolic, anti-inflammatory, and anti-fibrotic pathways. These therapeutic actions directly target the drivers of extracellular matrix accumulation, oxidative stress, and cellular signaling disruptions that mediate the progression of renal fibrosis¹⁹. Mechanistic insights into TGF- β , MAPK, NF- κ B, and SMAD signaling cascades reveal multiple intervention points where pharmacological agents can modulate early renal injury, thereby forming the theoretical basis for evaluating drug regimens within this framework²⁰.

3.2 Key Components of the Framework

The conceptual model consists of four core domains: input variables, mechanistic pathways, drug intervention blocks, and mediators & moderators.

Input Variables:

These include demographic and clinical characteristics such as patient age, duration of diabetes, comorbidities, glycemic control, blood pressure status, and baseline renal indicators. These variables influence susceptibility to early glomerular injury, extracellular matrix remodeling, and endothelial dysfunction¹⁶.

Mechanistic Pathways:

Mechanisms central to early DKD progression include:

1. **Hemodynamic pathways** involving hyperfiltration, glomerular hypertension, and impaired autoregulation.
2. **Metabolic pathways** contributing to reactive oxygen species generation, advanced glycation end-products, and mitochondrial dysfunction¹⁹.
3. **Anti-fibrotic pathways** related to TGF- β and SMAD signaling, which drive mesangial expansion and interstitial fibrosis²⁰.

Drug Intervention Blocks:


Renoprotective regimens function by modulating these specific pathways. Some agents target renal hemodynamics, while others attenuate inflammatory signaling, restore endothelial stability, or inhibit profibrotic cascades. These intervention points serve as anchors for aligning drug actions with early DKD mechanisms.

Mediators and Moderators:

Inflammatory cytokines, oxidative stress markers, endothelial health, and molecular signaling molecules mediate drug effects. Moderators, including disease severity, metabolic control, and genetic factors, shape the variability in therapeutic response^{17,18}.

Figure 1 illustrates how patient-related inputs activate early DKD mechanisms and how renoprotective drug

classes intervene at specific biological pathways. It also highlights mediators and moderators that influence treatment outcomes, creating an integrated and sequential flow from disease drivers to predicted renal responses.

Figure 1. Conceptual Framework for Early-Stage DKD and Renoprotective Mechanisms

3.3 Theoretical Propositions

Based on the integrated model, several theoretical propositions guide the comparative evaluation:

1. Mechanism-Based Expectations:

Pharmacological agents targeting hemodynamic overload and extracellular matrix accumulation are expected to demonstrate superior early-stage benefits by intercepting the earliest structural changes in DKD^{16,17}.

2. Interaction Effects:

Drugs addressing endothelial dysfunction or oxidative stress may exert synergistic effects when combined with hemodynamic modulators, due to their complementary roles in restoring vascular and glomerular stability^{18,19}.

3. Predicted Outcomes:

Interventions that modulate pro-fibrotic signaling, reduce metabolic injury, and restore endothelial integrity are theoretically predicted to slow mesangial expansion, reduce albuminuria, and preserve renal function trajectory in early DKD²⁰.

4. Mechanistic Evaluation of Renoprotective Drug Regimens

The mechanistic evaluation of renoprotective drug regimens in early-stage diabetic kidney disease (DKD) involves understanding how each therapeutic class interacts with the primary biological drivers of renal injury. These mechanisms include hemodynamic stress, metabolic dysregulation, oxidative injury, inflammation, and fibrotic signaling processes that evolve early in DKD pathogenesis. Each drug category exerts distinct but complementary effects on these pathways, forming the basis for comparative mechanistic understanding.

To support an integrated view, Table 1 summarizes the primary mechanistic actions of each renoprotective drug class. The table provides a concise comparison of their hemodynamic, metabolic, anti-inflammatory, and anti-fibrotic influences, which helps contextualize their differential contributions to early DKD management. This structured comparison strengthens the theoretical flow of the section by linking pharmacological actions with disease pathways.

Table 1. Mechanistic Actions of Major Renoprotective Drug Classes in Early-Stage DKD

Drug Class	Primary Mechanisms	Key Effects in Early DKD
------------	--------------------	--------------------------

ACE Inhibitors	Reduce intraglomerular pressure; inhibit angiotensin II formation	Lower hyperfiltration; reduce proteinuria
ARBs	Block angiotensin II receptor type 1	Reduce RAAS-mediated injury; decrease microalbuminuria
SGLT2 Inhibitors	Restore tubuloglomerular feedback; reduce sodium-glucose reabsorption	Stabilize eGFR slope; reduce inflammation
GLP-1 RAs	Improve metabolic profile; reduce oxidative stress	Lower weight & glucose; improve renal hemodynamics
Finerenone	Block mineralocorticoid receptor; reduce fibrosis	Attenuate inflammation & fibrosis; synergize with RAAS blockers

4.1 ACE Inhibitors

ACE inhibitors remain foundational in DKD management due to their ability to reduce intraglomerular pressure and improve renal hemodynamics. Their primary mechanism involves inhibition of angiotensin II formation, resulting in efferent arteriole dilation and reduction in glomerular hypertension. This hemodynamic effect subsequently lowers proteinuria, a key marker of early DKD progression²¹. Additionally, ACE inhibition mitigates RAAS-mediated oxidative and inflammatory stress, thereby contributing to slower mesangial expansion and structural preservation.

4.2 ARBs

Angiotensin receptor blockers (ARBs) provide renoprotection by selectively blocking angiotensin II type 1 receptors, preventing downstream vasoconstrictive and pro-inflammatory effects. This blockade reduces glomerular hypertension and suppresses aldosterone-mediated fibrosis, improving renal hemodynamics in early DKD²². ARBs also demonstrate substantial reductions in microalbuminuria, reflecting their efficacy in addressing early glomerular permeability changes linked to diabetic injury.

4.3 SGLT2 Inhibitors

SGLT2 inhibitors exert renoprotective effects through restoration of tubuloglomerular feedback, achieved by increasing sodium delivery to the macula densa and reducing hyperfiltration. This mechanism leads to greater stability of the eGFR slope over time, even in non-hyperglycemic states, making SGLT2 inhibitors highly effective in early DKD. Beyond hemodynamic benefits, they also reduce renal inflammation and oxidative stress, contributing to a multifaceted renoprotective profile. Their ability to act independently of glucose levels highlights their value across a broad DKD population^{23,24}.

4.4 GLP-1 Receptor Agonists

GLP-1 receptor agonists provide renoprotection through metabolic modulation, including improved glycemic control, body-weight reduction, and reduction in oxidative stress. These mechanisms indirectly benefit renal hemodynamics by reducing metabolic load and systemic inflammation²⁵. Clinical trials have also demonstrated reductions in albuminuria and improved renal outcomes, reinforcing their role in addressing early metabolic drivers of DKD²⁶. Their dual action on

metabolic and inflammatory pathways positions them as valuable adjuncts in early DKD therapy.

4.5 Finerenone

Finerenone, a selective nonsteroidal mineralocorticoid receptor antagonist, targets pro-inflammatory and profibrotic pathways central to early DKD progression. By inhibiting mineralocorticoid receptor overactivation, finerenone reduces renal fibrosis, tubulointerstitial inflammation, and oxidative injury key contributors to structural renal decline²⁷. Its complementary mechanism with ACE inhibitors and ARBs allows additive benefits by further blocking aldosterone-mediated fibrosis and inflammation, providing stronger renoprotection when used in combination therapies^{28,29}. Economic modeling also demonstrates its cost-effectiveness, expanding its practicality in clinical settings³⁰.

5. Comparative Analysis of Drug Regimens in Early-Stage DKD

5.1 Comparative Mechanistic Integration

Early-stage diabetic kidney disease (DKD) involves overlapping metabolic, hemodynamic, and inflammatory processes; accordingly, renoprotective therapies exert their benefits through distinct yet complementary mechanisms. Hemodynamic agents such as ACE inhibitors or ARBs primarily reduce intraglomerular pressure, while SGLT2 inhibitors offer a dual benefit: restoring tubuloglomerular feedback and attenuating metabolic stress³¹. Additional metabolic regulators including GLP-1 receptor agonists support glucose and weight reduction, contributing to downstream improvements in renal vascular and inflammatory tone. Anti-fibrotic agents such as finerenone further extend protection by targeting mineralocorticoid receptor-mediated fibrotic pathways, making it particularly relevant in patients with inflammation-driven renal progression. This mechanistic integration highlights the multidimensional therapeutic landscape required to slow early DKD.

5.2 Expected Effects on Renal Outcomes

Across drug classes, improvements in albuminuria, eGFR slope stabilization, and hemodynamic balance emerge as consistent predictors of slowed renal decline. SGLT2 inhibitors demonstrate significant reductions in albuminuria and favorable eGFR trajectory due to their upstream impact on tubuloglomerular feedback and reduced hyperfiltration^{31,32}. In contrast, hemodynamic stabilizers such as ACE inhibitors and ARBs maintain long-term glomerular structural integrity by reducing

pressure-mediated injury. Anti-fibrotic therapy with finerenone has been shown to reduce inflammation and collagen deposition, translating into improvements in albuminuria and renal survival outcomes, particularly when combined with baseline RAAS inhibition³³. Collectively, these outcomes support a layered therapeutic model where each mechanism contributes uniquely to renal protection.

5.3 Combination Therapy Potential

Given DKD's multifactorial progression, combination therapy offers meaningful synergistic opportunities:

- **ACEI/ARB + SGLT2i:**

This combination merges hemodynamic relief with metabolic and inflammatory improvement. Evidence shows that patients receiving RAAS blockade alongside SGLT2 inhibitors achieve enhanced cardiorenal benefits compared to monotherapy³¹.

- **SGLT2i + GLP-1 RA:**

This combination targets metabolic load, weight reduction, oxidative stress, and inflammation.

Improvements across both cardiovascular and renal markers have been noted when GLP-1 RAs are layered onto SGLT2 inhibitor therapy, providing complementary protection³².

- **ACEI/ARB + Finerenone:**

Finerenone's anti-fibrotic and anti-inflammatory impact complements RAAS inhibition, offering deeper protection in patients with albuminuria and advancing renal structural injury. Data indicates benefit irrespective of SGLT2 inhibitor background therapy, underscoring its unique role³³.

5.4 Comparative Summary Table

To support the comparative synthesis, Table 2 provides an overview of therapeutic mechanisms, strengths, limitations, and predicted outcomes across major renoprotective drug classes. This structured comparison helps clarify how differing drug profiles align with early-stage DKD pathophysiology and aids clinical reasoning for combination or sequential therapy strategies.

Table 2. Comparative Summary of Renoprotective Drug Regimens in Early-Stage DKD

Drug Class	Core Mechanism	Key Strengths	Limitations	Expected Outcomes
ACEI/ARB	Hemodynamic modulation	Strong proteinuria reduction; glomerular pressure drops	Limited metabolic effects	Stabilized hemodynamics; ↓ albuminuria
SGLT2 Inhibitors	Tubuloglomerular feedback restoration	↓ eGFR slope decline; metabolic + inflammatory benefits	Dependent on glycosuric action	↓ albuminuria; slower DKD progression
GLP-1 RAs	Metabolic optimization	Weight & glycemic improvement; ↓ oxidative stress	Indirect renal mechanisms	Improved vascular tone; ↓ albuminuria
Finerenone	Anti-fibrotic, anti-inflammatory	Synergy with RAAS blockade; ↓ fibrosis	Hyperkalemia risk possible	↓ inflammation; improved renal survival

6. Discussion

The conceptual framework developed in this study offers a structured interpretation of how renoprotective drug classes interact with the major biological pathways underlying early-stage diabetic kidney disease (DKD). By mapping patient characteristics, early mechanistic disruptions, and pharmacological targets into an integrated model, the framework clarifies the multidimensional nature of DKD and the strategic positioning of each drug class within this progression. This structure supports the understanding that effective DKD management requires a combination of approaches targeting glomerular hemodynamics, metabolic dysfunction, inflammation, and fibrosis simultaneously. The framework directly aligns with emerging viewpoints suggesting that future care pathways will increasingly rely on multidrug strategies to address the multifactorial burden of DKD progression³⁴.

The clinical implications arising from this conceptual analysis are substantial. First, the framework underscores the value of early identification of DKD, emphasizing the importance of recognizing hyperfiltration, subtle albuminuria, and metabolic abnormalities before structural damage becomes irreversible. Early detection enables timely initiation of targeted therapies such as SGLT2 inhibitors, RAAS blockers, and GLP-1 receptor agonists, which are

supported by current diabetes and renal guidelines for slowing progression when used promptly³⁵. Second, personalized therapy selection emerges as a central clinical priority. Different patients exhibit varying degrees of metabolic dysregulation, inflammatory burden, hemodynamic stress, and fibrotic activity. The framework, therefore, guides clinicians in aligning drug mechanisms with individual patient profiles. For example, patients with dominant hemodynamic stress may benefit more from ACE inhibitors or ARBs, while those with significant metabolic or inflammatory components may derive greater benefit from SGLT2 inhibitors or GLP-1 RAs, reflecting their proven impact on renal outcomes³⁶. This alignment supports precision medicine strategies that tailor therapy to the biological needs of the patient rather than providing uniform treatment across diverse disease presentations.

Research implications also arise clearly from the framework. While the theoretical model integrates well-established mechanistic and clinical knowledge, empirical testing remains essential to validate the multidimensional interactions depicted. The need for clinical studies that specifically evaluate the mechanistic complementarity of combination therapies is especially pronounced. Current evidence indicates that layering therapies such as SGLT2 inhibitors, GLP-1 receptor agonists, and mineralocorticoid receptor antagonists may provide incremental or synergistic

renal benefits, but head-to-head and combination trials are still relatively limited³⁷. Furthermore, long-term evaluations of early-stage interventions remain insufficient, as most existing trials focus on patients with more advanced CKD. This highlights a research gap that future studies must address to fully leverage early intervention opportunities. Additionally, mechanistic studies exploring the biology of early DKD, especially regarding fibrosis, mitochondrial function, and metabolic inflammation, will help refine the framework and guide more targeted therapeutic innovation³⁸.

The strengths of this conceptual study lie in its integration of complex pathophysiological and pharmacological evidence into a coherent explanatory model. By synthesizing diverse mechanistic findings, the framework provides a clinically relevant scaffold that clinicians and researchers can use to understand treatment sequencing, therapeutic synergy, and the rationale for multifactorial intervention. It also offers a foundation upon which future empirical research can build, particularly in the design of combination therapy trials. The study also has limitations inherent to conceptual research. The framework relies on currently available evidence and, therefore, may not capture emerging mechanisms or novel therapeutics not yet studied extensively. It also does not provide empirical validation or statistical analysis, meaning that the theoretical relationships outlined require confirmation through rigorous clinical and translational studies. Finally, the generalizability of the model may vary across patient phenotypes, as DKD displays significant heterogeneity in metabolic control, genetic predisposition, and comorbidity burden. Despite these limitations, the conceptual framework provides a valuable tool for advancing understanding and guiding future research and clinical practice in early DKD management.

7. Conclusion

This conceptual study provides an integrated understanding of how major renoprotective drug regimens interact with the early biological pathways of diabetic kidney disease (DKD), emphasizing the need for multifaceted therapeutic strategies. By mapping patient-specific factors, mechanistic disruptions, and pharmacological actions into a unified framework, the analysis highlights how early-stage DKD is driven by interconnected hemodynamic, metabolic, inflammatory, and fibrotic processes. The conceptual integration demonstrates that no single therapeutic class can fully address the complexity of disease progression, reinforcing the rationale for combination and mechanism-targeted treatment approaches. Early intervention emerges as a central theme, as structural renal injury often precedes clinically detectable declines in filtration markers. Prompt recognition of early abnormalities such as subtle albuminuria, endothelial dysfunction, or metabolic stress can support timely initiation of therapies that modulate hyperfiltration, restore tubuloglomerular feedback, reduce oxidative stress, and attenuate fibrotic signaling. Intervening at these early mechanistic nodes offers the greatest

potential to preserve renal function, delay disease progression, and improve long-term outcomes for individuals with diabetes. The theoretical contribution of this work lies in its articulation of a structured framework that consolidates diverse mechanistic evidence into a coherent explanatory model. By aligning drug classes with specific biological pathways, the framework enhances conceptual clarity, supports clinical reasoning, and provides a foundation for more rational therapeutic sequencing. It also helps identify areas where evidence is robust and where further empirical research is needed. Future directions include validating the framework through comparative and combination therapy trials, exploring emerging therapeutic targets, and refining pathway interactions using molecular and translational research. Continued evolution of this conceptual model will enhance understanding of DKD heterogeneity and support increasingly personalized care approaches aimed at intercepting the disease at its earliest, most modifiable stage.

References:

1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. *Clinical journal of the American Society of Nephrology*. 2017 Dec 1;12(12):2032-45.
2. Thomas MC. Targeting the pathobiology of diabetic kidney disease. *Advances in Chronic Kidney Disease*. 2021 Jul 1;28(4):282-9.
3. Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. *Journal of Histochemistry & Cytochemistry*. 2012 Dec;60(12):976-86.
4. Narres M, Claessen H, Droste S, Kvitkina T, Koch M, Kuss O, Icks A. The incidence of end-stage renal disease in the diabetic (compared to the non-diabetic) population: a systematic review. *PloS one*. 2016 Jan 26;11(1):e0147329.
5. Hsia HC, Eriksson E, Gurtner GC, Veves A, Hamdy O, Margolis DJ, Armstrong DG, Lavery LA, Grice EA, Schultz G, Conte MS. Management of Diabetic Wounds: Expert Panel Consensus Statement. *Advances in Wound Care*. 2025 Aug 20.
6. Navaneethan SD, Zoungas S, Caramori ML, Chan JC, Heerspink HJ, Hurst C, Liew A, Michos ED, Olowu WA, Sadusky T, Tandon N. Diabetes management in chronic kidney disease: synopsis of the KDIGO 2022 clinical practice guideline update. *Annals of internal medicine*. 2023 Mar;176(3):381-7.
7. de Boer IH, Caramori ML, Chan JC, Heerspink HJ, Hurst C, Khunti K, Liew A, Michos ED, Navaneethan SD, Olowu WA, Sadusky T. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. *Kidney international*. 2020 Oct 1;98(4):S1-15.
8. Hughes E, Wang XX, Sabol L, Barton K, Hegde S, Myakala K, Krawczyk E, Rosenberg A, Levi M. Role of nuclear receptors, lipid metabolism, and mitochondrial function in the pathogenesis of diabetic kidney disease. *American Journal of Kidneys Diseases*. 2020 Dec;76(6):639-50.

Physiology-Renal Physiology. 2025 Oct 1;329(4):F510-47.

9. Lim AK. Diabetic nephropathy—complications and treatment. International journal of nephrology and renovascular disease. 2014 Oct 15:361-81.
10. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, De Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD, Neumiller JJ. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes care. 2014 Oct 1;37(10):2864-83.
11. Jabareen Y. Building a conceptual framework: philosophy, definitions, and procedure. International journal of qualitative methods. 2009 Dec;8(4):49-62.
12. Imenda S. Is there a conceptual difference between theoretical and conceptual frameworks. Journal of social sciences. 2014 Feb 1;38(2):185-95.
13. Miles MB. Qualitative data analysis: An expanded sourcebook. Thousand Oaks. 1994.
14. Webster J, Watson RT. Analyzing the past to prepare for the future: Writing a literature review. MIS quarterly. 2002 Jun 1:xiii-xiii.
15. Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health information & libraries journal. 2009 Jun;26(2):91-108.
16. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. Journal of the American Society of Nephrology. 2003 May 1;14(5):1358-73.
17. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. InSeminars in nephrology 2007 Mar 1 (Vol. 27, No. 2, pp. 195-207). WB Saunders.
18. Oltean S, Qiu Y, Ferguson JK, Stevens M, Neal C, Russell A, Kaura A, Arkill KP, Harris K, Symonds C, Lacey K. Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy. Journal of the American Society of Nephrology. 2015 Aug 1;26(8):1889-904.
19. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiological reviews. 2013 Jan;93(1):137-88.
20. Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling pathways involved in diabetic renal fibrosis. Frontiers in cell and developmental biology. 2021 Jul 12;9:696542.
21. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. New England Journal of Medicine. 2001 Sep 20;345(12):851-60.
22. Brenner BM, Cooper ME, De Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. New England journal of medicine. 2001 Sep 20;345(12):861-9.
23. Heerspink HJ, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JF, McMurray JJ, Lindberg M, Rossing P, Sjöström CD, Dapagliflozin in patients with chronic kidney disease. New England Journal of Medicine. 2020 Oct 8;383(15):1436-46.
24. Herrington Gómez WG, Staplin Gómez N, Wanner Gómez C, Green Gómez JB, Hauske Gómez SJ, Emberson Gómez JR. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2023;388(2):117-27.
25. Mann JF, Ørsted DD, Brown-Frandsen K, Marso SP, Poultier NR, Rasmussen S, Tornøe K, Zinman B, Buse JB. Liraglutide and renal outcomes in type 2 diabetes. New England Journal of Medicine. 2017 Aug 31;377(9):839-48.
26. Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, Botros FT. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. The lancet Diabetes & endocrinology. 2018 Aug 1;6(8):605-17.
27. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. New England journal of medicine. 2020 Dec 3;383(23):2219-29.
28. Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, Kolkhof P, Nowack C, Gebel M, Ruilope LM, Bakris GL. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. European heart journal. 2022 Feb 7;43(6):474-84.
29. Griffin L, B. Standridge J. A systematic review of randomized controlled trials examining the nephroprotective properties of antihypertensive medications. Current Hypertension Reviews. 2012 Aug 1;8(3):196-226.
30. Lasalvia P, Gil-Rojas Y, García Á. Cost-effectiveness of dapagliflozin compared to DPP-4 inhibitors as combination therapy with metformin in the treatment of type 2 diabetes mellitus without established cardiovascular disease in Colombia. Expert Review of Pharmacoeconomics & Outcomes Research. 2022 Aug 18;22(6):955-64.
31. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RH, Bhatt DL. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet. 2019 Jan 5;393(10166):31-9.
32. McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZ, Dagogo-Jack S, Pratley R, Greenberg M, Wang S, Huyck S, Gantz I. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA cardiology. 2021 Feb 1;6(2):148-58.
33. Rossing P, Filippatos G, Agarwal R, Anker SD, Pitt B, Ruilope LM, Chan JC, Kooy A, McCafferty K, Schernthaner G, Wanner C. Finerenone in predominantly advanced CKD and type 2 diabetes with or without sodium-glucose cotransporter-2

inhibitor therapy. *Kidney international reports*. 2022 Jan 1;7(1):36-45.

34. Alicic RZ, Neumiller JJ, Tuttle KR. Combination therapy: an upcoming paradigm to improve kidney and cardiovascular outcomes in chronic kidney disease. *Nephrology Dialysis Transplantation*. 2025 Jan;40(Supplement_1):i3-17.
35. Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). *Diabetologia*. 2022 Dec;65(12):1925-66.
36. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. *New England Journal of Medicine*. 2016 Jul 28;375(4):323-34.
37. Esposito P, Picciotto D, Cappadona F, Costigliolo F, Russo E, Macciò L, Viazzi F. Multifaceted relationship between diabetes and kidney diseases: beyond diabetes. *World journal of diabetes*. 2023 Oct 15;14(10):1450.
38. Rabbani SA, El-Tanani M, Kumar R, Saini M, El-Tanani Y, Sharma S, Aljabali AA, Hajeer E, Rizzo M. Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs. *Pharmaceuticals*. 2025 Jul 28;18(8):1130.