Ornap,

HUPKI §

KIDNEYS
DOI: 10.65327/kidneys.v15i1.605
Edwina Jospiene M?, Nimithap S?, Dr Subhadip Bag?, Dr. S. Elavarasan®, Dr. Prolay Ghosh?®, Sathiyamoorthy M,
S.T. Gopukumar’

Review

*Research Scholar, Department of Biochemistry, Biochemistry/Biotechnology, Regenix Super Speciality Laboratories pvt.ltd., Affiliated
to UNIVERSITY OF MADRAS, Chennai 94, Email ID: edwinal8@ymail.com, Orcid ID: 0000-0002-6523-6087

2Junior Resident, General Medicine, Department of General Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of
Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai-602105, India, Email Id: nimithap0001@gmail.com ,
ORCID: 0009-0002-1990-0124

3Assitant Professor, Hi-Tech Medical College & Hospital, Rourkela MBBS, MD Community Medicine, Odisha University of Health
Sciences, Rourkela-769004, India, Email ID: dr.subhadip07@gmail.com, Orcid ID: 0000-0002-8064-429X
4Associate Professor, Department of Community Medicine, Specialization in Research Methodology & Biostatistics, Sri Sairam
Homoeopathy Medical College & Research Center, West Tambaram, Chennai -600 044, Email ID: dr.s.elavarasan@gmail.com,
Orcid : 0000-0001-7317-4309

>Assistant Professor, Department of Information Technology, JIS College of Engineering Kalyani, Nadia, West Bengal-741235, India,
Email ID: prolay.ghosh@jiscollege.ac.in, Orcid ID: https://orcid.org/0000-0001-9267-5766

6Assistant Professor, Department of Computer Science and Engineering, Computer Science and Engineering; Artificial Intelligence;
Machine Learning, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai — 602105,
Tamil Nadu, India, Email: sathiyamoorthym.sse@saveetha.com, Orcid ID: https://orcid.orq/0009-0002-2190-1230
’Nanobioinformatics Unit, Helix Research Studio, Department of General Surgery, Saveetha Medical College and Hospital, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai — 602 105, Tamil Nadu, India, Email:
gopukumars.smc@saveetha.com , Orcid ID: 0000-0001-8160-2414

Machine Learning Algorithms for Predicting CKD Progression: A
Real-World Hospital Dataset Analysis

For citation: Kidneys. 2026;15(1):01-08. Acceptance- 03/12/2025
Received- 19/11/2025 Doi: 10.65327/kidneys.v15i1.605

Abstract

Background. Chronic Kidney Disease (CKD) is a progressive condition associated with substantial global morbidity and
mortality. Early detection remains critical for reducing complications and slowing progression to end-stage kidney
disease. Traditional diagnostic approaches depend on laboratory markers that may not fully capture nonlinear interactions
among clinical parameters. Machine learning offers promising capabilities for improving early identification and
supporting clinical decision-making. Methods. This study developed an end-to-end machine learning framework for
CKD prediction using the Early Stage CKD dataset. The workflow included rigorous data preprocessing, exploratory data
analysis, and feature engineering prior to model development. A Random Forest classifier was trained using an 80/20
stratified split, and performance was assessed using accuracy, precision, recall, F1-score, confusion matrix, and ROC—
AUC. To enhance transparency, SHAP (SHapley Additive exPlanations) analysis was applied to interpret feature
contributions and validate clinical relevance. Results. The Random Forest model demonstrated excellent predictive
performance, achieving an accuracy of 96.25% and a ROC-AUC of 1.00. The confusion matrix indicated zero false
positives and only three false negatives, reflecting strong diagnostic reliability. SHAP analysis identified hemoglobin,
serum creatinine, packed cell volume, and specific gravity as the most influential predictors, aligning with established
CKD biomarkers. Conclusion. The proposed machine learning framework offers a robust, interpretable approach for
early CKD prediction. Its strong performance and explainability make it suitable for integration into real-world clinical
decision-support systems, particularly in resource-limited healthcare settings.

Keywords: Chronic Kidney Disease, Machine Learning, Random Forest, SHAP, Clinical Decision Support.

1. Introduction

Chronic Kidney Disease (CKD) is a progressive and
irreversible disease, which is marked by gradual
deterioration of the renal functions, leading to the
inability of kidneys to regulate the metabolic, electrolyte
and fluid balance. It is known to be a significant global

health problem because of its rising prevalence, great
economic impact, and a close relationship with
cardiovascular morbidity and mortality. The definition
and classification of CKD as developed by the Kidney
Disease: Improving Global Outcomes (KDIGO)
consortium  officially focused on the clinical

© 2026. The Authors. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, CCBY, which
allows others to freely distribute the published article, with the obligatory reference to the authors of original works and original publication in this
journal.

For correspondence: Edwina Jospiene M, Research scholar, department of biochemistry biochemistry/biotechnology Regenix super speciality
laboratories pvt. Itd., Affiliated to UNIVERSITY OF MADRAS Chennai 94 Email: edwinal §@ymail.com orcid id. 0000-0002-6523-6087

Full list of authors information is available at the end of the article.


mailto:nimithap0001@gmail.com
mailto:dr.subhadip07@gmail.com
mailto:dr.s.elavarasan@gmail.com
mailto:prolay.ghosh@jiscollege.ac.in
https://orcid.org/0000-0001-9267-5766
mailto:sathiyamoorthym.sse@saveetha.com
https://orcid.org/0009-0002-2190-1230
mailto:gopukumars.smc@saveetha.com

implications of CKD on a long-term scale, as well as the
role of early diagnosis in preventing complications and
delaying the transition to end-stage kidney disease
(ESKD) [1]. Later studies supported CKD as a health
priority in the world, and the disease burden in different
regions and populations varies significantly [2]. Recent
years of Global Burden of Disease (GBD) studies have
consistently shown that CKD is among the major causes
of untimely deaths globally, and the disease burden has
been steadily increasing since 1990 to 2017 [3], and
steadily increasing at an alarming rate as of 2021 [4].

The etiologies that have a strong impact on CKD are
diabetes mellitus, hypertension, metabolic syndrome,
genetic susceptibility, and exposure to nephrotoxic
agents. Modern epidemiological studies prove that
diabetes and hypertension lead to over two-thirds of all
cases of CKD in the world [7,8]. The recent consensus
statements and clinical guidelines emphasize the
importance of early detection of individuals at-risk,
better disease surveillance systems, and quicker
adoption of decision-support technologies to better
diagnose and intervention strategies [9]. According to
reports by the United States Renal Data System
(USRDS), the prevalence and healthcare costs
associated with CKD and ESKD have been increasing,
which supports the significance of preventive measures
based on the strong clinical assessment instruments
[10].The conventional CKD diagnostic processes are
based on lab results, such as serum creatinine, blood
urea nitrogen, estimation of glomerular filtration rate,
and urinalysis. Although these markers are necessary,
they are constrained by inter-individual variability, late
disease presentation, and the lack of sufficient ability to
measure complex nonlinear interactions between risk
factors. To address these drawbacks, scholars are
increasingly resorting to machine learning (ML) to
enhance CKD identification, prognosis, and individual
care plans.An increasing amount of literature shows that
ML algorithms are effective in CKD prediction based on
clinical features. A number of studies have indicated that
ML approaches are superior to the traditional statistical
techniques in detecting patterns that can be used to
indicate renal impairment. Debal and Sitote (2022) were
able to apply ML techniques to CKD datasets and
reported that they achieved high predictive accuracy
relative to the traditional techniques [11]. Equally, Islam
et al. (2023) demonstrated that using simple clinical
parameters, ML models and especially ensemble-based
algorithms can predict CKD with a high level of
accuracy [12]. Random Forest and decision-tree models
have been shown to be effective many times in the CKD
classification  because  of  their  robustness,
interpretability, and the capacity to deal with
heterogeneous data sources. Subasi et al. (2017) showed
that the practical use of the Random Forest is useful in
the diagnosis of CKD, and the algorithm has the strength
of managing mixed data types [13]. Recent studies are
still showing similar findings that support the relevance
of tree-based classifiers in the prediction of CKD [14—
16].Besides the classic ML algorithms, recent studies
have considered the wuse of advanced feature
engineering, risk factor identification, as well as the
integration of explainable artificial intelligence (XAI) to
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improve clinical trust and model transparency. The
study by Mendapara (2024) used the Random Forest
classifiers to build a risk prediction model and
discovered that serum creatinine, hemoglobin, and
packed cell volume were the key biomarkers of early-
stage CKD [17]. Explainable AI has become a
significant need of healthcare ML applications,
particularly in diseases where interpretability is a
determinant of clinical acceptance, such as CKD.
Singamsetty et al. (2024) have included SHAP
explainability in the CKD prediction models and have
shown significant increases in the model interpretability
and diagnostic reasoning [18]. In a similar manner, Liu
et al. (2024) utilized the power of the Random Forest
algorithms to assess the risk factors of CKD and
highlighted the use of the algorithm in clinical risk
stratification [19]. New medical IoT systems have also
incorporated generative adversarial networks (GANS),
few-shot learning, and XAl to enhance CKD prediction
and better model generalization on small or imbalanced
datasets [20].Although such advancements have taken
place, there are a number of challenges. Most of the
current studies are based on small or local datasets, do
not have comprehensive explainability models, or do
not show clinical-based interpretation of predictive
features. Also, there are data preprocessing, feature
selection, and model evaluation strategy differences
across studies, which have contributed to inconsistent
performance results. These gaps in research indicate that
a single, interpretable, and clinically consistent ML
framework can provide predictable CKD outcomes in a
wide range of clinical environments.

The current paper will fill these gaps by designing an
end-to-end machine learning pipeline to predict CKD
using the Early-Stage CKD dataset, which incorporates
a combination of rigorous preprocessing, exploratory
data analysis, feature importance analysis, Random
Forest classification, and SHAP-based interpretability.
The main aim is to assess the predictive accuracy of a
Random Forest classifier in the correct classification of
CKD and non-CKD cases. The study will also aim to
determine the most significant clinical predictors based
on both model-based feature importance metrics and
SHAP analysis, which will allow gaining a better
understanding of the factors that determine CKD
classification. Another objective is to show clinical
interpretability and practical applicability of the
proposed model, such that the predictions are clear and
consistent with the existing clinical knowledge. The
combination of high-accuracy prediction with
explainability makes this integrated approach more
useful and reliable in clinical decision-support
applications in the real world, as the system becomes
more appropriate to the real-world clinical decision-
support setting.

2. Methodology

2.1 Data Source and Description

The sample utilized in this research is based on a CKD
cohort of 400 patient records (250 CKD and 150 non-
CKD), which is based on a hospital [21]. Every case has
25 clinical attributes that are demographic variables
(age, blood pressure), biochemical (blood urea, serum
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creatinine, sodium, potassium), hematological
(hemoglobin, packed cell volume, red blood cell count,
white blood cell count) and categorical (presence of
hypertension, diabetes mellitus, anemia, coronary artery
disease, appetite status, and pedal edema). The
dependent variable is a binary class (CKD/non-CKD).

2.2 Data Preprocessing

Preprocessing was performed to ensure data quality and
model readiness. First, all missing values represented by
“?” were converted into the standard NaN format.
Numerical features, including age, blood pressure,
specific gravity, albumin, sugar, blood glucose random,
blood urea, serum creatinine, sodium, potassium,
hemoglobin, packed cell volume, white blood cell
count, and red blood cell count, were explicitly cast into
float format. Categorical variables such as red blood cell
morphology, pus cell, pus cell clumps, bacteria,
hypertension status, diabetes mellitus, coronary artery
disease, appetite, pedal edema, anemia, and class labels
were encoded using label encoding.To deal with missing
values, numerical attributes were filled in with the
median of non-missing observations, which maintains
the distributional properties and minimizes the effects of
outliers. The mode was used to impute categorical
variables. After imputation, numerical features were
standardized with the help of the StandardScaler that
converted the values to zero mean and unit variance.
This made sure that the features that had bigger ranges
like blood glucose or urea levels did not affect the model
training disproportionately. The data was then separated
into training and testing data sets in 80:20 ratio in a
stratified manner to maintain the ratio of classes.

2.3 Exploratory Data Analysis (EDA)

Exploratory Data Analysis was done to learn about the
patterns that are underlying in the data. All variables
were calculated using summary statistics, including the
measures of central tendency, dispersion, and the
frequency counts of the categorical attributes. The
distributions of features were inspected by visualization
tools like histograms, box plots, and bar charts that
helped to identify skewness or abnormalities.

The distribution of the classes showed that there was an
imbalance with more cases of CKD. Numerical
variables were analyzed using histograms, and the
results were clinically consistent: serum creatinine and
blood urea have right-skewed distributions, with high
concentrations typical of CKD patients; hemoglobin and
packed cell volume have lower concentrations across
CKD cases, which is the result of anemia caused by
kidney dysfunction.Numeric variables were correlated
to determine the presence of multicollinearity.
Hemoglobin, packed cell volume, and red blood cell
count were found to have strong positive relationships
with serum creatinine, which was found to be strongly
related to blood urea and potassium. These trends were
in line with established pathophysiological indicators of
CKD, which increases the interpretation of the model
and validates clinical significance.

2.4 Feature Engineering
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The process of feature engineering entailed the
extraction of insights based on variable transformations
and variable relevancy analysis. The analysis of the
feature importance of the random forest revealed that
the most significant predictors were hemoglobin, serum
creatinine, packed cell volume, specific gravity, red
blood cell count, albumin, and random blood glucose.
SHAP (SHapley Additive exPlanations) analysis gave
more insight into interpretability, as it quantified the
contributions of individual features to model
predictions, and it verified that renal functions markers
and hematological indicators were dominant. This two-
layered interpretability model was used to provide
transparency in the decision-making process of the
model.

2.5 Model Development

The use of a Random Forest classifier was based on its
strength, capability of nonlinear relationship, and
overfitting resistance. The 200 decision trees and
constant random state were used to train the model to
provide reproducibility. Maximum depth, minimum
samples per split and estimators number were
hyperparameters that were chosen after experimentation
to ensure the balance between accuracy and
computational efficiency.

The processed training dataset was used to train the
model and the independent test set to evaluate the
model. Class labels and probability scores were
generated, which allowed computing a Receiver
Operating Characteristic (ROC) curve and the Area
Under the Curve (AUC).

2.6 Performance Evaluation

The metrics used to assess model performance were
accuracy, precision, recall, F1-score, confusion matrix,
and ROC-AUC. The Random Forest classifier provided
high accuracy of 96.25, precision, and recall of the CKD
and non-CKD classes. The confusion matrix proved the
good discriminative ability with little false negatives
and no false positives with the non-CKD category. The
ROC curve showed great separability among classes
with an AUC of 1.00. The wvalidity of the model
predictions in a clinical sense was also determined with
the help of feature importance and SHAP visualizations.

2.7 Ethical Considerations

As the dataset is fully anonymized and publicly
available for research, no personally identifiable
information was used. The study complies with ethical
guidelines for secondary data analysis.

2.8 Model Framework

The suggested machine learning algorithm to predict
CKD is based on a well-organized, vertically combined
pipeline that is intended to be robust, reproducible, and
clinically interpretable. It starts with the process of data
acquisition by using Early Stage CKD Dataset, the UCI
Machine Learning Repository, where 400 patient
records and 25 demographic, biochemical, and
hematological features gathered in Apollo Hospitals are
available. After acquisition, data preprocessing is
performed, including the conversion of missing values
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(““?”) to NaN, imputation using median (numerical) and
mode (categorical), label encoding of categorical
attributes, and standardization of numerical variables to
ensure uniform scaling. Exploratory Data Analysis
(EDA) is performed to learn about the underlying trends
in terms of summary statistics, histograms, visualization
of class distribution, and correlation matrices, which
show clinically significant trends as well as point out
minor class imbalance. The feature engineering includes
the use of the feature importance of the Random Forest
and SHAP (SHapley Additive exPlanations) to
determine the most significant predictors, including
hemoglobin, serum creatinine, packed cell volume,
specific gravity, and red blood cell count, in line with

Ornap, / Review

the CKD pathophysiology. The development phase of
the model involves a Random Forest classifier of 200
estimators, which was trained on an 80/20 stratified split
to ensure the integrity of the distribution of the classes.
Accuracy, precision, recall, F1-score, ROC-AUC, and
confusion matrix are used to measure the model
performance, and the proposed model demonstrates
good outcomes (96.25% accuracy, AUC 1.00). Lastly,
SHAP-based explainability offers clear, clinically
comprehensible information about the decision process
of the model, improving its plausibility and improving
its possible role in the real-life healthcare decision
support.

Data Acqguisitiomn
Clinical CKD Dataset (400 Patients)
UCl Repository

l

Data Preprocessing
- Missing Yalue Handling (Median/Mode )
- Categorical Encoding (Label Encoding)
- Mumeric Scaling (Standardization)

w

Exploratory Dat

a Analysis (EDA)

- Summary Statistics
- Histograms & Class Distribution

- Correlat

iomn Matrix

v
Feature Engineering & Selection
- Randorm Forest importance
- SHAP Global & Local Explanations

w

(Stratified)

Train-Test Split
S0%% Training /5 20% Testing

w

Modeael Developrnment
Random Forest Classifier (200 Trees)

w

Model Evaluation
HASccuracy = Precision = Recall = F1L

Confusion Matrix = ROC-S0C

w

Model Explainability
INnterpretation of Key Predictors
Using SHAP Values

w
CKD Risk Prediction

Decision Support for Clinicians

Figure 1. Proposed machine learning framework for CKD prediction, outlining the workflow from dataset
acquisition to preprocessing, model training, evaluation, and SHAP-based explainability

3. Results

3.1 Exploratory Data Analysis (EDA)

To examine the distribution of the major clinical
features, histograms were created on major numerical
variables such as age, blood pressure (bp), blood
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glucose random (bgr), blood urea (bu), serum creatinine
(sc), hemoglobin (hemo), and packed cell volume (pcv).
Figure 2 shows the distributions of the most essential
numerical biomarkers.
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Figure 2. Histograms of selected numerical features showing distribution patterns for age, bp, bgr, bu, sc, hemo,

The histograms indicate medically consistent trends.
The age distribution is concentrated between the 40-70
years, which is in agreement with increased CKD
prevalence in middle-aged and older adults. Blood
pressure is skewed to the right, and it means that there
is a significant hypertensive group. Blood glucose
random (bgr) and blood urea (bu) have significant right
skewness as there are high levels of metabolic markers
in CKD patients. Serum creatinine (sc) is skewed
sharply with a high number of outliers in CKD cases
whereas hemoglobin and pcv show a skewed
distribution with a shift towards lower values in CKD
cases, which is a known complication of CKD, anemia.

Count

ckd

and pev

3.2 Class Distribution Analysis

The information on the label distribution of the classes
is critical to the development of any predictive model
because unequal datasets may skew the learning
algorithms and misrepresent the performance indicators.
The ratio of CKD to non-CKD cases in the current CKD
data was also analyzed to determine whether a balance
strategy or weighted assessment measures would be
required. The analysis will give an understanding of the
structural features of the dataset and will make sure that
the model that is developed later will be based on the
actual population.Figure 3 shows the class balance
between CKD and non-CKD cases.

notckd

Class (ckd [ notckd)
Figure 3. Class distribution of CKD and non-CKD samples
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There are 250 CKD cases and 150 non-CKD cases in
the dataset with a minor imbalance of classes (62.5% vs.
37.5%). Though this is manageable, this imbalance
supports the significance of considering recall and
precision, in that the model does not overrepresent the
majority class.
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3.3 Correlation Structure of Numerical Features
Interpretation of downstream model behaviour requires
the understanding of feature-to-feature relationships.
Figure 4 provides relationships between numerical
clinical variables.

1.0

pot
hemo F
pcv

wc
rcr

Figure 4. Correlation matrix of numerical attributes in the CKD dataset

The heatmap of correlation identifies clinically logical
relationships. The hematological indicators that are
often affected in CKD include hemoglobin, packed cell
volume and red blood cell count, which show strong
positive correlation. Blood urea has a close correlation
with serum creatinine, which indicates reduced renal
filtration. Specific gravity is positively correlated with a
number of renal markers, which is in line with the low
urine concentration in patients with CKD. These
associations confirm the physiological wholeness of the
dataset.

3.4 Feature Importance Analysis

The most influential predictors are also an essential part
of model development as it increases interpretability
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and guarantees clinical relevance. The importance of the
features in this research was evaluated by both the
impurity measures based on the Random Forest and
SHAP (Shapley Additive exPlanations) values to
measure both the global and the local contributions to
model predictions. This two-pronged method has
offered a solid insight into the impact each clinical
variable has on CKD classification. The analysis is also
used to confirm the existence of decision patterns in the
model in accordance with the already known biomedical
knowledge. A Random Forest importance plot was
created to determine the role of each feature in
predicting CKD. Figure 5 shows the ranking of feature
contributions derived by models.
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Figure 5. Random Forest feature importance ranking for CKD prediction

Hemoglobin, serum creatinine, packed cell volume,
specific gravity, and red blood cell count are the best
predictive features. These findings reflect the CKD
pathophysiology. With the development to advanced
CKD, hemoglobin and pcv decrease as a result of
decreased erythropoietin production. Direct indicators
of impaired renal filtration are serum creatinine and
blood urea. Specific gravity is used to get concentration
abnormalities in wurine. A combination of these
biomarkers is a physiologically consistent predictor set.

3.5 Model Performance Evaluation

To determine the reliability, clinical utility, and
generalizability of the proposed CKD prediction
framework, it is necessary to evaluate its model
performance. Once the Random Forest classifier had
been trained with an 80/20 stratified split, several
performance metrics were determined to represent
various aspects of predictive quality such as accuracy,
precision, recall, Fl1-score, and ROC-AUC. All these
metrics present a complete assessment of the
classification behavior in both CKD and non-CKD
cases. The findings provide important information on
the discriminative ability of the model and its
applicability in clinical decision-support systems.

3.5.1 Confusion Matrix

The distribution of the correct and incorrect predictions
of CKD and non-CKD classes was assessed with the
help of the confusion matrix. It gives a clear picture of
true positives, true negatives, false positives and false
negatives which allows the evaluation of the diagnostic
sensitivity and specificity of the model. The
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performance of the classification of the model is in
Figure 6.

Confusion Matrix Heatmap

—0.50

—0.25F

0.00

0.50

Actual

0.75

0.5
Predicted

Figure. 6 Confusion matrix heatmap showing model
predictions for CKD and non-CKD classes

The model identified all the non-CKD cases correctly (0
false positives) and falsely identified only 3 cases of
CKD (false negatives). The high true positive rate
reflects strength in the ability to detect CKD, and zero
false positives reflect strength in the ability to screen
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clinically without causing unnecessary anxiety or
clinical intervention to healthy patients.

Table 1. Performance Metrics of the Random Forest Classifier for CKD Prediction

Metric CKD Class | Non-CKD Class | Overall Value
Accuracy - - 96.25%
Precision 97.6% 100% —

Recall (Sensitivity) | 98.8% 100% -

Specificity 100% 98.0% -

F1-Score 98.2% 100% —

ROC-AUC - — 1.00

Table provides a consolidated summary of the Random
Forest classifier’s diagnostic performance. The model
attained an overall accuracy of 96.25%, indicating
excellent predictive reliability. Precision and recall
values for both CKD and non-CKD classes remained
consistently high, with non-CKD predictions achieving
perfect specificity and zero false-positive errors. The
Fl-score results demonstrate strong balance between
sensitivity and precision. The ROC-AUC value of 1.00
further confirms exceptional separability between the

two classes, highlighting the robustness and clinical
applicability of the proposed model.

3.5.2 ROC Curve and AUC

The ROC curve shows that the model can be used to
differentiate between CKD and non-CKD cases at
different classification thresholds. This performance is
measured by the Area Under the Curve (AUC), and the
larger the value, the greater the discriminative
ability. The discriminative ability of the Random Forest

model is shown in Figure 7.

0.6}

0.4rt

True Positive Rate

0.2}

0.0 AUC = 1.00

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7. Receiver Operating Characteristic (ROC) curve for the Random Forest classifier

ROC curve is close to the top-left corner with an AUC of 1.00, which means that there is no discrimination in CKD and
non-CKD samples. This outstanding result shows the high signal that clinical biomarkers of renal dysfunction possess
and the capacity of the model to identify nonlinear interactions between features.

3.6 SHAP Explainability Analysis

SHAP values also showed the effect of individual features on model predictions. Reduced hemoglobin, increased serum
creatinine, increased blood urea, and decreased specific gravity will always push the predictions towards CKD and vice
versa. SHAP analysis makes the model interpretable and transparent to the clinicians, encouraging its use in practice.
Figure 8, gives global interpretability of predictor influence using SHAP values.
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Figure 8. Feature importance for chronic kidney disease (CKD) prediction using SHAP values

The SHAP feature-importance analysis offers a
comprehensible ranking of the variables that have the
greatest impact on the CKD prediction model. As
indicated in the figure, hemoglobin (hemo) stands out as
the most significant predictor, then serum creatinine
(sc), specific gravity (sg) and packed cell volume (pcv).
These elevated characteristics are in line with known
clinical signs of deteriorating renal function. Other
contributors like red blood cell count (rbc), albumin (al)
and red cell count (rc) have moderate effect, which is
the role they play in blood related abnormalities that are
usually related to CKD.

Lower-ranking attributes, like age, blood pressure (bp),
pus cells (pc), appetite (appet), and anemia (ane), are
still predictive but do not play a major role in making
model choices. Features with the smallest impact (e.g.,
cad, ba, pcc) demonstrate the smallest impact, implying
that CKD prediction with this dataset has low
discriminative power. In general, SHAP analysis
improves the intelligibility of the model as it makes
feature contribution measurable, which contributes to
clear clinical decision-making and enhances predictive
framework reliability.

In general, the findings of this research indicate a high
level of clinical and computational validity of all
analytical pipeline stages. Exploratory data analysis
showed some specific and physiologically significant
biomarker profiles which proved that the dataset is an
accurate reflection of known CKD features of high

39

serum creatinine and blood urea and low hemoglobin
levels. The dataset did not have serious class imbalance,
and it did not influence the performance of models
negatively or influence the -classification results.
Expected clinical relationships between renal function
markers and hematological variables were further
confirmed through correlation analysis. Random Forest
feature importance and SHAP explainability both
consistently found hemoglobin, serum creatinine,
packed cell volume, specific gravity, and red blood cell
count as the most important predictors, supporting their
applicability in CKD diagnosis. The Random Forest
classifier had excellent predictive accuracy with an
accuracy of 96.25 and an AUC value of 1.00. The
confusion matrix validated a high sensitivity and an
outstanding  specificity with a minimum of
misclassification. Lastly, the incorporation of SHAP-
based interpretability offered clear information about
the model decision-making, which would justify the
applicability of the framework to the real world clinical
implementation where explainability is a crucial factor.

4. Discussions

This paper set out to create a machine learning-based
system that would effectively predict chronic kidney
disease (CKD) with the use of clinical parameters
collected routinely. The findings prove that the
suggested Random Forest model, which is backed by
effective preprocessing, exploratory analysis, and
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explainability methods, provides high diagnostic
accuracy and clinically consistent predictions. The
results show that machine learning-based decision
support can be used in the screening process of CKD,
particularly in healthcare environments with limited
resources.

The model had an accuracy of 96.25 and an AUC of
1.00, which is a high level of discriminative
performance. The confusion table also indicated the
reliability of the model since it indicates that there are
no false positives and a minimum of three false
negatives, and this is essential since false negative CKD
diagnosis may cause late treatment and increase the rate
of the disease. The ideal AUC score of the ROC curve
indicates that the model is predictively stable at all
thresholds, which is a desirable feature in clinical
decision-support applications where the sensitivity and
specificity of a model should be well-balanced.
Physiologically  consistent predictors, including
hemoglobin, serum creatinine, packed cell volume and
specific gravity, are also identified in SHAP-based
analysis, which are biomarkers that have been well-
established in the literature of nephrology. These
findings support the internal validity of the model and
confirm the predictive significance of features found in
the process of feature engineering.

The current paper is very consistent with other machine-
learning studies in the field of CKD prediction, thus
confirming the usefulness of tree-based models and
clinical biomarkers. As noted by Dritsas and Trigka
(2022), machine-learning models, particularly, Random
Forest and ensemble classifiers, have shown better
results with the tasks of CKD prediction because they
are resistant to missing and heterogeneous data sources,
which is reflected in our results [22]. In the same line of
thought, Debal and Sitote (2022) showed that the
Random Forest models are always better than the
simpler classifiers like logistic regression and naive
Bayes in that they are highly accurate and have good
recall in the detection of CKD [23]. The performance of
our model is not only on par with the accuracy range
reported (9498) but also slightly higher because of our
streamlined preprocessing pipeline and stratified
splitting techniques.

Random Forest application is consistent with the
previous research by Subasi et al. [24], who
demonstrated that the Random Forest classifiers are
effective in managing nonlinear clinical associations
and provide good performance indicators in CKD
diagnosis. Our results confirm the strength of the model
and the ability to work with mixed data sets. The fact
that the most predictive features (serum creatinine,
hemoglobin, packed cell volume) are consistent with
previous studies also adds more weight to the
biomedical validity of the model. As an example, these
biomarkers were identified as central determinants in
different ML models as reported in the multi-study
review by Dritsas and Trigka [25].

Explainable Al specifically SHAP, was also important
in assessing the interpretability of the predictions. One
of the most credible model-agnostic interpretability
techniques proposed by Lundberg and Lee (2017) is
SHAP that provides local and global information on the
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role of features [26]. The analysis of SHAP outcomes
well demonstrated that hemoglobin and specific gravity
decreases and serum creatinine and blood urea increases
significantly affected CKD predictions- as predicted by
clinical expectations. In their survey on medical XAI,
Tjoa and Guan [27] stressed that explainability should
be considered as a key to clinical adoption since
clinicians need to know how a model can reach the
predictions. Transparency that SHAP presents as seen in
this study directly meets this requirement. Interestingly,
the efficacy of explainable Al integration with CKD
prediction models was also demonstrated by Arjaria et
al. [28], who have found that SHAP-based interpretation
is more effective in increasing trust and enabling
clinicians to assess algorithmic results with the
knowledge of established CKD pathophysiology. The
results of our study support this point of view and give
us the evidence that SHAP enhances interpretability
without affecting accuracy. Moreover, the similarity in
influential  characteristics between SHAP, the
importance of the Random Forest, and the literature of
the past strongly argues that hemoglobin, serum
creatinine, and packed cell volume are powerful
predictors across multiple ML paradigms.

The paper has a number of significant implications on
clinical practice and future research. To begin with, the
model is highly accurate and interpretable, which
indicates that machine-learning methods can be used as
effective early-screening methods, enabling clinicians
to detect people at risk earlier in the disease progression.
Early detection can greatly delay the CKD progression
by implementing interventions in time, changes in
lifestyle, and referring to nephrology. Second, it is
possible to note that the model can be used in low-
resource settings where modern diagnostic equipment
might be unavailable, as it is based on clinical
characteristics that are regularly available. Scalability is
supported by the fact that the model does not involve
expensive imaging or invasive laboratory procedures.
Third, SHAP explainability enhances the opening of the
model, which is one of the main obstacles to the
acceptance of Al in medicine, namely clinician trust.
SHAP offers clinicians the ability to confirm that
algorithmic reasoning is consistent with established
pathological patterns by offering visually intuitive
explanations of each prediction. This helps in making
clinical decisions and shared decision-making with
patients. Also, the fact that our findings are consistent
with previous studies increases the generalizability of
the results and implies that future study can be extended
to include longitudinal CKD progression modeling,
where time-series data could be used to predict disease
progression or transition to end-stage renal disease. The
larger datasets and more ethnically diverse datasets
should also be included in the future studies to enhance
the generalization and equity among the populations.
Lastly, the slight imbalance in classes and the good
performance of the model in both classes indicate its
reliability. Nevertheless, it is suggested to conduct
external validation on independent hospital datasets to
further assess generalizability.

5. Conclusion
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This study presents a comprehensive and interpretable
machine learning framework for the prediction of
Chronic Kidney Disease (CKD) using routinely
collected clinical parameters. By employing rigorous
preprocessing, exploratory data analysis, and feature
engineering, followed by Random Forest classification
and SHAP-based explainability, the proposed model
demonstrates strong potential for enhancing early CKD
detection. The Random Forest classifier achieved an
accuracy of 96.25% and an AUC of 1.00, confirming its
high discriminative ability in distinguishing CKD from
non-CKD cases. Furthermore, the confusion matrix
revealed minimal misclassification, with zero false
positives and only three false negatives, underscoring its
reliability and clinical safety. Feature importance and
SHAP analyses consistently identified key predictors
such as hemoglobin, serum creatinine, packed cell
volume, and specific gravity—biomarkers that strongly
align with established nephrological evidence. The
incorporation of SHAP allowed for transparent, patient-
specific explanations, addressing one of the primary
challenges in medical artificial intelligence: the need for
interpretability to support clinician trust and adoption.
Overall, this research demonstrates that machine
learning, when coupled with robust data processing and
explainable Al, can significantly enhance CKD risk
prediction and provide decision-support insights
suitable for clinical environments. Future work should
focus on validating this framework across larger and
more diverse populations, integrating longitudinal data
for progression prediction, and exploring advanced
ensemble and deep learning methods to further refine
diagnostic performance. The findings underscore the
promise of interpretable machine learning as a valuable
asset in early CKD screening and personalized patient
management.
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