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Abstract 

Background. Chronic Kidney Disease (CKD) is a progressive condition associated with substantial global morbidity and 

mortality. Early detection remains critical for reducing complications and slowing progression to end-stage kidney 

disease. Traditional diagnostic approaches depend on laboratory markers that may not fully capture nonlinear interactions 

among clinical parameters. Machine learning offers promising capabilities for improving early identification and 

supporting clinical decision-making. Methods. This study developed an end-to-end machine learning framework for 

CKD prediction using the Early Stage CKD dataset. The workflow included rigorous data preprocessing, exploratory data 

analysis, and feature engineering prior to model development. A Random Forest classifier was trained using an 80/20 

stratified split, and performance was assessed using accuracy, precision, recall, F1-score, confusion matrix, and ROC–

AUC. To enhance transparency, SHAP (SHapley Additive exPlanations) analysis was applied to interpret feature 

contributions and validate clinical relevance. Results. The Random Forest model demonstrated excellent predictive 

performance, achieving an accuracy of 96.25% and a ROC–AUC of 1.00. The confusion matrix indicated zero false 

positives and only three false negatives, reflecting strong diagnostic reliability. SHAP analysis identified hemoglobin, 

serum creatinine, packed cell volume, and specific gravity as the most influential predictors, aligning with established 

CKD biomarkers. Conclusion. The proposed machine learning framework offers a robust, interpretable approach for 

early CKD prediction. Its strong performance and explainability make it suitable for integration into real-world clinical 

decision-support systems, particularly in resource-limited healthcare settings. 

 

Keywords: Chronic Kidney Disease, Machine Learning, Random Forest, SHAP, Clinical Decision Support. 

 

1. Introduction 

Chronic Kidney Disease (CKD) is a progressive and 

irreversible disease, which is marked by gradual 

deterioration of the renal functions, leading to the 

inability of kidneys to regulate the metabolic, electrolyte 

and fluid balance. It is known to be a significant global 

health problem because of its rising prevalence, great 

economic impact, and a close relationship with 

cardiovascular morbidity and mortality. The definition 

and classification of CKD as developed by the Kidney 

Disease: Improving Global Outcomes (KDIGO) 

consortium officially focused on the clinical 
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implications of CKD on a long-term scale, as well as the 

role of early diagnosis in preventing complications and 

delaying the transition to end-stage kidney disease 

(ESKD) [1]. Later studies supported CKD as a health 

priority in the world, and the disease burden in different 

regions and populations varies significantly [2]. Recent 

years of Global Burden of Disease (GBD) studies have 

consistently shown that CKD is among the major causes 

of untimely deaths globally, and the disease burden has 

been steadily increasing since 1990 to 2017 [3], and 

steadily increasing at an alarming rate as of 2021 [4]. 

The etiologies that have a strong impact on CKD are 

diabetes mellitus, hypertension, metabolic syndrome, 

genetic susceptibility, and exposure to nephrotoxic 

agents. Modern epidemiological studies prove that 

diabetes and hypertension lead to over two-thirds of all 

cases of CKD in the world [7,8]. The recent consensus 

statements and clinical guidelines emphasize the 

importance of early detection of individuals at-risk, 

better disease surveillance systems, and quicker 

adoption of decision-support technologies to better 

diagnose and intervention strategies [9]. According to 

reports by the United States Renal Data System 

(USRDS), the prevalence and healthcare costs 

associated with CKD and ESKD have been increasing, 

which supports the significance of preventive measures 

based on the strong clinical assessment instruments 

[10].The conventional CKD diagnostic processes are 

based on lab results, such as serum creatinine, blood 

urea nitrogen, estimation of glomerular filtration rate, 

and urinalysis. Although these markers are necessary, 

they are constrained by inter-individual variability, late 

disease presentation, and the lack of sufficient ability to 

measure complex nonlinear interactions between risk 

factors. To address these drawbacks, scholars are 

increasingly resorting to machine learning (ML) to 

enhance CKD identification, prognosis, and individual 

care plans.An increasing amount of literature shows that 

ML algorithms are effective in CKD prediction based on 

clinical features. A number of studies have indicated that 

ML approaches are superior to the traditional statistical 

techniques in detecting patterns that can be used to 

indicate renal impairment. Debal and Sitote (2022) were 

able to apply ML techniques to CKD datasets and 

reported that they achieved high predictive accuracy 

relative to the traditional techniques [11]. Equally, Islam 

et al. (2023) demonstrated that using simple clinical 

parameters, ML models and especially ensemble-based 

algorithms can predict CKD with a high level of 

accuracy [12]. Random Forest and decision-tree models 

have been shown to be effective many times in the CKD 

classification because of their robustness, 

interpretability, and the capacity to deal with 

heterogeneous data sources. Subasi et al. (2017) showed 

that the practical use of the Random Forest is useful in 

the diagnosis of CKD, and the algorithm has the strength 

of managing mixed data types [13]. Recent studies are 

still showing similar findings that support the relevance 

of tree-based classifiers in the prediction of CKD [14–

16].Besides the classic ML algorithms, recent studies 

have considered the use of advanced feature 

engineering, risk factor identification, as well as the 

integration of explainable artificial intelligence (XAI) to 

improve clinical trust and model transparency. The 

study by Mendapara (2024) used the Random Forest 

classifiers to build a risk prediction model and 

discovered that serum creatinine, hemoglobin, and 

packed cell volume were the key biomarkers of early-

stage CKD [17]. Explainable AI has become a 

significant need of healthcare ML applications, 

particularly in diseases where interpretability is a 

determinant of clinical acceptance, such as CKD. 

Singamsetty et al. (2024) have included SHAP 

explainability in the CKD prediction models and have 

shown significant increases in the model interpretability 

and diagnostic reasoning [18]. In a similar manner, Liu 

et al. (2024) utilized the power of the Random Forest 

algorithms to assess the risk factors of CKD and 

highlighted the use of the algorithm in clinical risk 

stratification [19]. New medical IoT systems have also 

incorporated generative adversarial networks (GANs), 

few-shot learning, and XAI to enhance CKD prediction 

and better model generalization on small or imbalanced 

datasets [20].Although such advancements have taken 

place, there are a number of challenges. Most of the 

current studies are based on small or local datasets, do 

not have comprehensive explainability models, or do 

not show clinical-based interpretation of predictive 

features. Also, there are data preprocessing, feature 

selection, and model evaluation strategy differences 

across studies, which have contributed to inconsistent 

performance results. These gaps in research indicate that 

a single, interpretable, and clinically consistent ML 

framework can provide predictable CKD outcomes in a 

wide range of clinical environments. 

The current paper will fill these gaps by designing an 

end-to-end machine learning pipeline to predict CKD 

using the Early-Stage CKD dataset, which incorporates 

a combination of rigorous preprocessing, exploratory 

data analysis, feature importance analysis, Random 

Forest classification, and SHAP-based interpretability. 

The main aim is to assess the predictive accuracy of a 

Random Forest classifier in the correct classification of 

CKD and non-CKD cases. The study will also aim to 

determine the most significant clinical predictors based 

on both model-based feature importance metrics and 

SHAP analysis, which will allow gaining a better 

understanding of the factors that determine CKD 

classification. Another objective is to show clinical 

interpretability and practical applicability of the 

proposed model, such that the predictions are clear and 

consistent with the existing clinical knowledge. The 

combination of high-accuracy prediction with 

explainability makes this integrated approach more 

useful and reliable in clinical decision-support 

applications in the real world, as the system becomes 

more appropriate to the real-world clinical decision-

support setting. 

 

2.  Methodology 

2.1 Data Source and Description 

The sample utilized in this research is based on a CKD 

cohort of 400 patient records (250 CKD and 150 non-

CKD), which is based on a hospital [21]. Every case has 

25 clinical attributes that are demographic variables 

(age, blood pressure), biochemical (blood urea, serum 
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creatinine, sodium, potassium), hematological 

(hemoglobin, packed cell volume, red blood cell count, 

white blood cell count) and categorical (presence of 

hypertension, diabetes mellitus, anemia, coronary artery 

disease, appetite status, and pedal edema). The 

dependent variable is a binary class (CKD/non-CKD). 

 

2.2 Data Preprocessing 

Preprocessing was performed to ensure data quality and 

model readiness. First, all missing values represented by 

“?” were converted into the standard NaN format. 

Numerical features, including age, blood pressure, 

specific gravity, albumin, sugar, blood glucose random, 

blood urea, serum creatinine, sodium, potassium, 

hemoglobin, packed cell volume, white blood cell 

count, and red blood cell count, were explicitly cast into 

float format. Categorical variables such as red blood cell 

morphology, pus cell, pus cell clumps, bacteria, 

hypertension status, diabetes mellitus, coronary artery 

disease, appetite, pedal edema, anemia, and class labels 

were encoded using label encoding.To deal with missing 

values, numerical attributes were filled in with the 

median of non-missing observations, which maintains 

the distributional properties and minimizes the effects of 

outliers. The mode was used to impute categorical 

variables. After imputation, numerical features were 

standardized with the help of the StandardScaler that 

converted the values to zero mean and unit variance. 

This made sure that the features that had bigger ranges 

like blood glucose or urea levels did not affect the model 

training disproportionately. The data was then separated 

into training and testing data sets in 80:20 ratio in a 

stratified manner to maintain the ratio of classes. 

 

2.3 Exploratory Data Analysis (EDA) 

Exploratory Data Analysis was done to learn about the 

patterns that are underlying in the data. All variables 

were calculated using summary statistics, including the 

measures of central tendency, dispersion, and the 

frequency counts of the categorical attributes. The 

distributions of features were inspected by visualization 

tools like histograms, box plots, and bar charts that 

helped to identify skewness or abnormalities. 

The distribution of the classes showed that there was an 

imbalance with more cases of CKD. Numerical 

variables were analyzed using histograms, and the 

results were clinically consistent: serum creatinine and 

blood urea have right-skewed distributions, with high 

concentrations typical of CKD patients; hemoglobin and 

packed cell volume have lower concentrations across 

CKD cases, which is the result of anemia caused by 

kidney dysfunction.Numeric variables were correlated 

to determine the presence of multicollinearity. 

Hemoglobin, packed cell volume, and red blood cell 

count were found to have strong positive relationships 

with serum creatinine, which was found to be strongly 

related to blood urea and potassium. These trends were 

in line with established pathophysiological indicators of 

CKD, which increases the interpretation of the model 

and validates clinical significance. 

 

2.4 Feature Engineering 

The process of feature engineering entailed the 

extraction of insights based on variable transformations 

and variable relevancy analysis. The analysis of the 

feature importance of the random forest revealed that 

the most significant predictors were hemoglobin, serum 

creatinine, packed cell volume, specific gravity, red 

blood cell count, albumin, and random blood glucose. 

SHAP (SHapley Additive exPlanations) analysis gave 

more insight into interpretability, as it quantified the 

contributions of individual features to model 

predictions, and it verified that renal functions markers 

and hematological indicators were dominant. This two-

layered interpretability model was used to provide 

transparency in the decision-making process of the 

model. 

 

2.5 Model Development 

The use of a Random Forest classifier was based on its 

strength, capability of nonlinear relationship, and 

overfitting resistance. The 200 decision trees and 

constant random state were used to train the model to 

provide reproducibility. Maximum depth, minimum 

samples per split and estimators number were 

hyperparameters that were chosen after experimentation 

to ensure the balance between accuracy and 

computational efficiency. 

The processed training dataset was used to train the 

model and the independent test set to evaluate the 

model. Class labels and probability scores were 

generated, which allowed computing a Receiver 

Operating Characteristic (ROC) curve and the Area 

Under the Curve (AUC). 

 

2.6 Performance Evaluation 

The metrics used to assess model performance were 

accuracy, precision, recall, F1-score, confusion matrix, 

and ROC-AUC. The Random Forest classifier provided 

high accuracy of 96.25, precision, and recall of the CKD 

and non-CKD classes. The confusion matrix proved the 

good discriminative ability with little false negatives 

and no false positives with the non-CKD category. The 

ROC curve showed great separability among classes 

with an AUC of 1.00. The validity of the model 

predictions in a clinical sense was also determined with 

the help of feature importance and SHAP visualizations. 

 

2.7 Ethical Considerations 

As the dataset is fully anonymized and publicly 

available for research, no personally identifiable 

information was used. The study complies with ethical 

guidelines for secondary data analysis. 

 

2.8 Model Framework  

The suggested machine learning algorithm to predict 

CKD is based on a well-organized, vertically combined 

pipeline that is intended to be robust, reproducible, and 

clinically interpretable. It starts with the process of data 

acquisition by using Early Stage CKD Dataset, the UCI 

Machine Learning Repository, where 400 patient 

records and 25 demographic, biochemical, and 

hematological features gathered in Apollo Hospitals are 

available. After acquisition, data preprocessing is 

performed, including the conversion of missing values 
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(“?”) to NaN, imputation using median (numerical) and 

mode (categorical), label encoding of categorical 

attributes, and standardization of numerical variables to 

ensure uniform scaling. Exploratory Data Analysis 

(EDA) is performed to learn about the underlying trends 

in terms of summary statistics, histograms, visualization 

of class distribution, and correlation matrices, which 

show clinically significant trends as well as point out 

minor class imbalance. The feature engineering includes 

the use of the feature importance of the Random Forest 

and SHAP (SHapley Additive exPlanations) to 

determine the most significant predictors, including 

hemoglobin, serum creatinine, packed cell volume, 

specific gravity, and red blood cell count, in line with 

the CKD pathophysiology. The development phase of 

the model involves a Random Forest classifier of 200 

estimators, which was trained on an 80/20 stratified split 

to ensure the integrity of the distribution of the classes. 

Accuracy, precision, recall, F1-score, ROC-AUC, and 

confusion matrix are used to measure the model 

performance, and the proposed model demonstrates 

good outcomes (96.25% accuracy, AUC 1.00). Lastly, 

SHAP-based explainability offers clear, clinically 

comprehensible information about the decision process 

of the model, improving its plausibility and improving 

its possible role in the real-life healthcare decision 

support. 

 

 
Figure 1. Proposed machine learning framework for CKD prediction, outlining the workflow from dataset 

acquisition to preprocessing, model training, evaluation, and SHAP-based explainability 

 

3. Results 

3.1 Exploratory Data Analysis (EDA) 

To examine the distribution of the major clinical 

features, histograms were created on major numerical 

variables such as age, blood pressure (bp), blood 

glucose random (bgr), blood urea (bu), serum creatinine 

(sc), hemoglobin (hemo), and packed cell volume (pcv). 

Figure 2 shows the distributions of the most essential 

numerical biomarkers. 
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Figure 2. Histograms of selected numerical features showing distribution patterns for age, bp, bgr, bu, sc, hemo, 

and pcv 

 

The histograms indicate medically consistent trends. 

The age distribution is concentrated between the 40-70 

years, which is in agreement with increased CKD 

prevalence in middle-aged and older adults. Blood 

pressure is skewed to the right, and it means that there 

is a significant hypertensive group. Blood glucose 

random (bgr) and blood urea (bu) have significant right 

skewness as there are high levels of metabolic markers 

in CKD patients. Serum creatinine (sc) is skewed 

sharply with a high number of outliers in CKD cases 

whereas hemoglobin and pcv show a skewed 

distribution with a shift towards lower values in CKD 

cases, which is a known complication of CKD, anemia.  

 

3.2 Class Distribution Analysis 

The information on the label distribution of the classes 

is critical to the development of any predictive model 

because unequal datasets may skew the learning 

algorithms and misrepresent the performance indicators. 

The ratio of CKD to non-CKD cases in the current CKD 

data was also analyzed to determine whether a balance 

strategy or weighted assessment measures would be 

required. The analysis will give an understanding of the 

structural features of the dataset and will make sure that 

the model that is developed later will be based on the 

actual population.Figure 3 shows the class balance 

between CKD and non-CKD cases. 

 

 
Figure 3. Class distribution of CKD and non-CKD samples 
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There are 250 CKD cases and 150 non-CKD cases in 

the dataset with a minor imbalance of classes (62.5% vs. 

37.5%). Though this is manageable, this imbalance 

supports the significance of considering recall and 

precision, in that the model does not overrepresent the 

majority class. 

 

3.3 Correlation Structure of Numerical Features 

Interpretation of downstream model behaviour requires 

the understanding of feature-to-feature relationships. 

Figure 4 provides relationships between numerical 

clinical variables. 

 

 
Figure 4. Correlation matrix of numerical attributes in the CKD dataset 

 

The heatmap of correlation identifies clinically logical 

relationships. The hematological indicators that are 

often affected in CKD include hemoglobin, packed cell 

volume and red blood cell count, which show strong 

positive correlation. Blood urea has a close correlation 

with serum creatinine, which indicates reduced renal 

filtration. Specific gravity is positively correlated with a 

number of renal markers, which is in line with the low 

urine concentration in patients with CKD. These 

associations confirm the physiological wholeness of the 

dataset. 

 

3.4 Feature Importance Analysis 

The most influential predictors are also an essential part 

of model development as it increases interpretability 

and guarantees clinical relevance. The importance of the 

features in this research was evaluated by both the 

impurity measures based on the Random Forest and 

SHAP (Shapley Additive exPlanations) values to 

measure both the global and the local contributions to 

model predictions. This two-pronged method has 

offered a solid insight into the impact each clinical 

variable has on CKD classification. The analysis is also 

used to confirm the existence of decision patterns in the 

model in accordance with the already known biomedical 

knowledge. A Random Forest importance plot was 

created to determine the role of each feature in 

predicting CKD. Figure 5 shows the ranking of feature 

contributions derived by models. 
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Figure 5. Random Forest feature importance ranking for CKD prediction 

 

Hemoglobin, serum creatinine, packed cell volume, 

specific gravity, and red blood cell count are the best 

predictive features. These findings reflect the CKD 

pathophysiology. With the development to advanced 

CKD, hemoglobin and pcv decrease as a result of 

decreased erythropoietin production. Direct indicators 

of impaired renal filtration are serum creatinine and 

blood urea. Specific gravity is used to get concentration 

abnormalities in urine. A combination of these 

biomarkers is a physiologically consistent predictor set. 

 

3.5 Model Performance Evaluation 

To determine the reliability, clinical utility, and 

generalizability of the proposed CKD prediction 

framework, it is necessary to evaluate its model 

performance. Once the Random Forest classifier had 

been trained with an 80/20 stratified split, several 

performance metrics were determined to represent 

various aspects of predictive quality such as accuracy, 

precision, recall, F1-score, and ROC–AUC. All these 

metrics present a complete assessment of the 

classification behavior in both CKD and non-CKD 

cases. The findings provide important information on 

the discriminative ability of the model and its 

applicability in clinical decision-support systems. 

 

3.5.1 Confusion Matrix 

The distribution of the correct and incorrect predictions 

of CKD and non-CKD classes was assessed with the 

help of the confusion matrix. It gives a clear picture of 

true positives, true negatives, false positives and false 

negatives which allows the evaluation of the diagnostic 

sensitivity and specificity of the model. The 

performance of the classification of the model is in 

Figure 6. 

 
Figure. 6 Confusion matrix heatmap showing model 

predictions for CKD and non-CKD classes 

 

The model identified all the non-CKD cases correctly (0 

false positives) and falsely identified only 3 cases of 

CKD (false negatives). The high true positive rate 

reflects strength in the ability to detect CKD, and zero 

false positives reflect strength in the ability to screen 
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clinically without causing unnecessary anxiety or 

clinical intervention to healthy patients. 

 

Table 1. Performance Metrics of the Random Forest Classifier for CKD Prediction 

Metric CKD Class Non-CKD Class Overall Value 

Accuracy – – 96.25% 

Precision 97.6% 100% – 

Recall (Sensitivity) 98.8% 100% – 

Specificity 100% 98.0% – 

F1-Score 98.2% 100% – 

ROC-AUC – – 1.00 

 

 Table provides a consolidated summary of the Random 

Forest classifier’s diagnostic performance. The model 

attained an overall accuracy of 96.25%, indicating 

excellent predictive reliability. Precision and recall 

values for both CKD and non-CKD classes remained 

consistently high, with non-CKD predictions achieving 

perfect specificity and zero false-positive errors. The 

F1-score results demonstrate strong balance between 

sensitivity and precision. The ROC-AUC value of 1.00 

further confirms exceptional separability between the 

two classes, highlighting the robustness and clinical 

applicability of the proposed model. 

 

3.5.2 ROC Curve and AUC 

The ROC curve shows that the model can be used to 

differentiate between CKD and non-CKD cases at 

different classification thresholds. This performance is 

measured by the Area Under the Curve (AUC), and the 

larger the value, the greater the discriminative 

ability.The discriminative ability of the Random Forest 

model is shown in Figure 7. 

 

 
Figure 7. Receiver Operating Characteristic (ROC) curve for the Random Forest classifier 

 

ROC curve is close to the top-left corner with an AUC of 1.00, which means that there is no discrimination in CKD and 

non-CKD samples. This outstanding result shows the high signal that clinical biomarkers of renal dysfunction possess 

and the capacity of the model to identify nonlinear interactions between features. 

 

3.6 SHAP Explainability Analysis 

SHAP values also showed the effect of individual features on model predictions. Reduced hemoglobin, increased serum 

creatinine, increased blood urea, and decreased specific gravity will always push the predictions towards CKD and vice 

versa. SHAP analysis makes the model interpretable and transparent to the clinicians, encouraging its use in practice. 

Figure 8, gives global interpretability of predictor influence using SHAP values. 
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Figure 8. Feature importance for chronic kidney disease (CKD) prediction using SHAP values 

 

The SHAP feature-importance analysis offers a 

comprehensible ranking of the variables that have the 

greatest impact on the CKD prediction model. As 

indicated in the figure, hemoglobin (hemo) stands out as 

the most significant predictor, then serum creatinine 

(sc), specific gravity (sg) and packed cell volume (pcv). 

These elevated characteristics are in line with known 

clinical signs of deteriorating renal function. Other 

contributors like red blood cell count (rbc), albumin (al) 

and red cell count (rc) have moderate effect, which is 

the role they play in blood related abnormalities that are 

usually related to CKD. 

Lower-ranking attributes, like age, blood pressure (bp), 

pus cells (pc), appetite (appet), and anemia (ane), are 

still predictive but do not play a major role in making 

model choices. Features with the smallest impact (e.g., 

cad, ba, pcc) demonstrate the smallest impact, implying 

that CKD prediction with this dataset has low 

discriminative power. In general, SHAP analysis 

improves the intelligibility of the model as it makes 

feature contribution measurable, which contributes to 

clear clinical decision-making and enhances predictive 

framework reliability. 

In general, the findings of this research indicate a high 

level of clinical and computational validity of all 

analytical pipeline stages. Exploratory data analysis 

showed some specific and physiologically significant 

biomarker profiles which proved that the dataset is an 

accurate reflection of known CKD features of high 

serum creatinine and blood urea and low hemoglobin 

levels. The dataset did not have serious class imbalance, 

and it did not influence the performance of models 

negatively or influence the classification results. 

Expected clinical relationships between renal function 

markers and hematological variables were further 

confirmed through correlation analysis. Random Forest 

feature importance and SHAP explainability both 

consistently found hemoglobin, serum creatinine, 

packed cell volume, specific gravity, and red blood cell 

count as the most important predictors, supporting their 

applicability in CKD diagnosis. The Random Forest 

classifier had excellent predictive accuracy with an 

accuracy of 96.25 and an AUC value of 1.00. The 

confusion matrix validated a high sensitivity and an 

outstanding specificity with a minimum of 

misclassification. Lastly, the incorporation of SHAP-

based interpretability offered clear information about 

the model decision-making, which would justify the 

applicability of the framework to the real world clinical 

implementation where explainability is a crucial factor. 

 

4. Discussions 

This paper set out to create a machine learning-based 

system that would effectively predict chronic kidney 

disease (CKD) with the use of clinical parameters 

collected routinely. The findings prove that the 

suggested Random Forest model, which is backed by 

effective preprocessing, exploratory analysis, and 
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explainability methods, provides high diagnostic 

accuracy and clinically consistent predictions. The 

results show that machine learning-based decision 

support can be used in the screening process of CKD, 

particularly in healthcare environments with limited 

resources. 

The model had an accuracy of 96.25 and an AUC of 

1.00, which is a high level of discriminative 

performance. The confusion table also indicated the 

reliability of the model since it indicates that there are 

no false positives and a minimum of three false 

negatives, and this is essential since false negative CKD 

diagnosis may cause late treatment and increase the rate 

of the disease. The ideal AUC score of the ROC curve 

indicates that the model is predictively stable at all 

thresholds, which is a desirable feature in clinical 

decision-support applications where the sensitivity and 

specificity of a model should be well-balanced. 

Physiologically consistent predictors, including 

hemoglobin, serum creatinine, packed cell volume and 

specific gravity, are also identified in SHAP-based 

analysis, which are biomarkers that have been well-

established in the literature of nephrology. These 

findings support the internal validity of the model and 

confirm the predictive significance of features found in 

the process of feature engineering. 

The current paper is very consistent with other machine-

learning studies in the field of CKD prediction, thus 

confirming the usefulness of tree-based models and 

clinical biomarkers. As noted by Dritsas and Trigka 

(2022), machine-learning models, particularly, Random 

Forest and ensemble classifiers, have shown better 

results with the tasks of CKD prediction because they 

are resistant to missing and heterogeneous data sources, 

which is reflected in our results [22]. In the same line of 

thought, Debal and Sitote (2022) showed that the 

Random Forest models are always better than the 

simpler classifiers like logistic regression and naive 

Bayes in that they are highly accurate and have good 

recall in the detection of CKD [23]. The performance of 

our model is not only on par with the accuracy range 

reported (9498) but also slightly higher because of our 

streamlined preprocessing pipeline and stratified 

splitting techniques. 

Random Forest application is consistent with the 

previous research by Subasi et al. [24], who 

demonstrated that the Random Forest classifiers are 

effective in managing nonlinear clinical associations 

and provide good performance indicators in CKD 

diagnosis. Our results confirm the strength of the model 

and the ability to work with mixed data sets. The fact 

that the most predictive features (serum creatinine, 

hemoglobin, packed cell volume) are consistent with 

previous studies also adds more weight to the 

biomedical validity of the model. As an example, these 

biomarkers were identified as central determinants in 

different ML models as reported in the multi-study 

review by Dritsas and Trigka [25]. 

Explainable AI, specifically SHAP, was also important 

in assessing the interpretability of the predictions. One 

of the most credible model-agnostic interpretability 

techniques proposed by Lundberg and Lee (2017) is 

SHAP that provides local and global information on the 

role of features [26]. The analysis of SHAP outcomes 

well demonstrated that hemoglobin and specific gravity 

decreases and serum creatinine and blood urea increases 

significantly affected CKD predictions- as predicted by 

clinical expectations. In their survey on medical XAI, 

Tjoa and Guan [27] stressed that explainability should 

be considered as a key to clinical adoption since 

clinicians need to know how a model can reach the 

predictions. Transparency that SHAP presents as seen in 

this study directly meets this requirement. Interestingly, 

the efficacy of explainable AI integration with CKD 

prediction models was also demonstrated by Arjaria et 

al. [28], who have found that SHAP-based interpretation 

is more effective in increasing trust and enabling 

clinicians to assess algorithmic results with the 

knowledge of established CKD pathophysiology. The 

results of our study support this point of view and give 

us the evidence that SHAP enhances interpretability 

without affecting accuracy. Moreover, the similarity in 

influential characteristics between SHAP, the 

importance of the Random Forest, and the literature of 

the past strongly argues that hemoglobin, serum 

creatinine, and packed cell volume are powerful 

predictors across multiple ML paradigms. 

The paper has a number of significant implications on 

clinical practice and future research. To begin with, the 

model is highly accurate and interpretable, which 

indicates that machine-learning methods can be used as 

effective early-screening methods, enabling clinicians 

to detect people at risk earlier in the disease progression. 

Early detection can greatly delay the CKD progression 

by implementing interventions in time, changes in 

lifestyle, and referring to nephrology. Second, it is 

possible to note that the model can be used in low-

resource settings where modern diagnostic equipment 

might be unavailable, as it is based on clinical 

characteristics that are regularly available. Scalability is 

supported by the fact that the model does not involve 

expensive imaging or invasive laboratory procedures. 

Third, SHAP explainability enhances the opening of the 

model, which is one of the main obstacles to the 

acceptance of AI in medicine, namely clinician trust. 

SHAP offers clinicians the ability to confirm that 

algorithmic reasoning is consistent with established 

pathological patterns by offering visually intuitive 

explanations of each prediction. This helps in making 

clinical decisions and shared decision-making with 

patients. Also, the fact that our findings are consistent 

with previous studies increases the generalizability of 

the results and implies that future study can be extended 

to include longitudinal CKD progression modeling, 

where time-series data could be used to predict disease 

progression or transition to end-stage renal disease. The 

larger datasets and more ethnically diverse datasets 

should also be included in the future studies to enhance 

the generalization and equity among the populations. 

Lastly, the slight imbalance in classes and the good 

performance of the model in both classes indicate its 

reliability. Nevertheless, it is suggested to conduct 

external validation on independent hospital datasets to 

further assess generalizability. 

 

5. Conclusion 
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This study presents a comprehensive and interpretable 

machine learning framework for the prediction of 

Chronic Kidney Disease (CKD) using routinely 

collected clinical parameters. By employing rigorous 

preprocessing, exploratory data analysis, and feature 

engineering, followed by Random Forest classification 

and SHAP-based explainability, the proposed model 

demonstrates strong potential for enhancing early CKD 

detection. The Random Forest classifier achieved an 

accuracy of 96.25% and an AUC of 1.00, confirming its 

high discriminative ability in distinguishing CKD from 

non-CKD cases. Furthermore, the confusion matrix 

revealed minimal misclassification, with zero false 

positives and only three false negatives, underscoring its 

reliability and clinical safety. Feature importance and 

SHAP analyses consistently identified key predictors 

such as hemoglobin, serum creatinine, packed cell 

volume, and specific gravity—biomarkers that strongly 

align with established nephrological evidence. The 

incorporation of SHAP allowed for transparent, patient-

specific explanations, addressing one of the primary 

challenges in medical artificial intelligence: the need for 

interpretability to support clinician trust and adoption. 

Overall, this research demonstrates that machine 

learning, when coupled with robust data processing and 

explainable AI, can significantly enhance CKD risk 

prediction and provide decision-support insights 

suitable for clinical environments. Future work should 

focus on validating this framework across larger and 

more diverse populations, integrating longitudinal data 

for progression prediction, and exploring advanced 

ensemble and deep learning methods to further refine 

diagnostic performance. The findings underscore the 

promise of interpretable machine learning as a valuable 

asset in early CKD screening and personalized patient 

management. 
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