CLFC: Contrastive Learning with Feature Concatenation Framework for Chronic Kidney Disease
DOI:
https://doi.org/10.65327/kidneys.v15i1.587Keywords:
Chronic Kidney Diseases, Acute Kidney Injury, Decision Support Systems, self supervised learning, Contrastive learningAbstract
Patients with thyroid dysfunction have a high likelihood of underdiagnosis of Chronic Kidney Disease (CKD) and Acute Kidney Injury (AKI) because the relationship between endocrine, renal, and metabolic biomarkers are complex and nonlinear. Conventional risk predictive models are unable to model these heterogeneous relationships, which leads to delayed nephroprotective interventions. To overcome this hurdle, this paper suggests the Contrastive Learning with Feature Concatenation (CLFC) model on the stratification of CKD/AKI disease at early and precise stages during the management of thyroid disease patients. The model uses modality-specific encoders, which learn latent representations using thyroid, renal, and metabolic data, but a self-supervised contrastive learning module uses the NT-Xent loss to ensure consistency of the representations. The trained multimodal embeddings are then combined with late-stage concatenation of features and trained with the help of supervised classification. Empirical analysis of a multimodal clinical dataset proves that the presented solution performs much better than the traditional machine learning and deep learning baselines, with higher accuracy, F1-score, and AUC. The importance of contrastive learning, and renal biomarkers in heightening the risk discrimination is further supported by the ablation studies. The suggested framework provides a clinically interpretable scalable robust solution to the assessment of CKD/AKI risk that can be used to make early nephroprotective decisions in thyroid-impacted populations.
Downloads
References
Mohamedali, M., Maddika, S. R., Vyas, A., Iyer, V., & Cheriyath, P. (2014). Thyroid disorders and chronic kidney disease. International Journal of Nephrology, 2014, Article 520281. https://doi.org/10.1155/2014/520281
Huang, C.-W., Li, B. H., Reynolds, K., Jacobsen, S. J., Rhee, C. M., & Sim, J. J. (2020). Association between hypothyroidism and chronic kidney disease observed among an adult population 55 years and older. Medicine, 99(17), e19569. https://doi.org/10.1097/MD.0000000000019569
Griffin, T. P., & Griffin, M. D. (2024). Thyroid dysfunction and chronic kidney disease: Unravelling the connection. Mayo Clinic Proceedings, 99(1), 7–9. https://doi.org/10.1016/j.mayocp.2023.10.018
Devi, G. D., Behera, K. K., Mangaraj, M., & Saharia, G. K. (2025). Unravelling the association between renal functions and anti thyroid peroxidase antibody levels in newly diagnosed cases of hypothyroidism in elderly. Frontiers in Endocrinology, 16, Article 1572675. https://doi.org/10.3389/fendo.2025.1572675
Gopinath, B., Harris, D. C., Wall, J. R., Kifley, A., & Mitchell, P. (2013). Relationship between thyroid dysfunction and chronic kidney disease in community-dwelling older adults. Maturitas, 75(2), 159–164. https://doi.org/10.1016/j.maturitas.2013.03.008
Mohamedali, M., Maddika, S. R., Vyas, A., Iyer, V., & Cheriyath, P. (2014). Thyroid disorders and chronic kidney disease. International Journal of Nephrology, 2014, Article 520281. https://doi.org/10.1155/2014/520281
Deraz, H. A. A., Shawky, N. M., Amin Alallam, A. S., & Mohamed Ateya, M. S. (2023). Assessment of thyroid disorders and chronic kidney disease. The Egyptian Journal of Hospital Medicine, 92(July 2023), 5778–5783. https://doi.org/not available (open access PDF)
Wang, X., Zhao, X., & Huang, X. (2020). Association of subclinical thyroid dysfunction with chronic kidney disease: A systematic review and meta-analysis. Endocrine Research, 45(1), 41–49. https://doi.org/10.1080/07435800.2019.1645164
Mohamedali, M., Maddika, S. R., Vyas, A., Iyer, V., & Cheriyath, P. (2014). Thyroid disorders and chronic kidney disease. International Journal of Nephrology, 2014, Article 520281. https://doi.org/10.1155/2014/520281
Wan, M., Ding, Y., Wang, Y., Jia, Y., Wu, S., Qu, W., Xu, Y., Fu, W., Timko, M. P., Wan, L., Ying, L., Ye, C., Chen, R., Li, Q., He, Y., Xu, K., Xu, N., Chen, J., Zheng, D., ... Ruan, J. (2025). Interpretable multimodal deep learning improves postoperative risk stratification in intrahepatic cholangiocarcinoma in multicentre cohorts. npj Digital Medicine, Article 02282-x. https://doi.org/10.1038/s41746-025-02282-x
Li, C., & Xu, Y. (2025). A decision support system in precision medicine: Contrastive multimodal learning for patient stratification. Annals of Operations Research, 348, 579–607. https://doi.org/10.1007/s10479-023-05545-6
Du, Q., Duan, X., Zhuang, P., Zhong, J., Liang, J., Chen, P., & Li, L. (2024). A multimodal deep learning framework with contrastive learning and multi-instance learning for endometrial cancer preoperative risk stratification [Preprint]. ResearchGate. https://doi.org/10.21203/rs.3.rs-3922470/v1
Liu, J., Capurro, D., Nguyen, A., & Verspoor, K. (2023). Attention-based multimodal fusion with contrast for robust clinical prediction in the face of missing modalities. Journal of Biomedical Informatics, 145(C), Article 104466. https://doi.org/not available
Li, Z., Li, H., Ralescu, A. L., Dillman, J. R., Altaye, M., Cecil, K. M., Parikh, N. A., & He, L. (2024). Joint self-supervised and supervised contrastive learning for multimodal MRI data: Towards predicting abnormal neurodevelopment. Artificial Intelligence in Medicine, 157, Article 102993. https://doi.org/10.1016/j.artmed.2024.102993
Gu, Y., Saito, K., & Ma, J. (2025). Learning contrastive multimodal fusion with improved modality dropout for disease detection and prediction. arXiv. https://arxiv.org/abs/2509.18284
Obaido, G., Mienye, I. D., Aruleba, K., Chukwu, C. W., Esenogho, E., & Modisane, C. (2025). Multimodal machine learning in healthcare: A tutorial and review [Preprint]. Preprints.org. https://doi.org/not available
Magesh, S., Niveditha, S., Manikandan, S., Ramkumar, R., Dhanalakshmi, R., & Velmurugan, S. (2025). Multimodal deep learning for cardiovascular risk stratification: Integrating retinal biomarkers and cardiovascular signals for enhanced heart failure prediction. IEEE Access, 13, 83582–83592. https://doi.org/10.1109/ACCESS.2025.3310668
Wood, D. A., Kafiabadi, S., Bana, A., Al Busaidi, A., Guilhem, E., Lynch, J., Townend, M., Montazami, A., ... Sobhy, M. (2025). Deep learning informed multimodal fusion of radiology and histopathology images for prostate cancer risk stratification. eBioMedicine, 101, Article 105011. https://doi.org/10.1016/j.ebiom.2025.105011
Guo, Q., Liao, Y., Li, Z., & Liang, S. (2023). Multi-modal representation via contrastive learning with attention bottleneck fusion and attentive statistics features. Entropy, 25(10), Article 1421. https://doi.org/10.3390/e25101421
Thapa, R., Kjaer, M. R., Mignot, E., & Zou, J. (2026). A multimodal sleep foundation model for disease prediction. Nature Medicine. https://doi.org/10.1038/s41591-025-04133-4
Mignot, E., Zou, J., Thapa, R., & Kjaer, M. R. (2026). A multimodal sleep foundation model for disease prediction. Nature Medicine. https://doi.org/10.1038/s41591-025-04133-4
Xia, M., Wilson, J., Goldstein, B., & Henao, R. (2024). Contrastive learning for clinical outcome prediction with partial data sources. Proceedings of Machine Learning Research, 235, 54156–54177. https://proceedings.mlr.press/v235/xia24a.html
Ketabi, S., Wagner, M. W., Hawkins, C., Tabori, U., Ertl-Wagner, B. B., & Khalvati, F. (2025). Multimodal contrastive learning for enhanced explainability in pediatric brain tumor molecular diagnosis. Scientific Reports, 15, Article 10943. https://doi.org/10.1038/s41598-025-94806-4
Sujith, A. V. L. N., Neelu, L., Murthy, T. K., Kumar, M. K., Aparna, T. D., & Mayasala, P. (2025). Integrating bioanalysis and deep learning ECGNet hybrid for real-time ECG pattern recognition. Journal of Applied Bioanalysis, 11(3), 534–545. https://doi.org/10.53555/jab.v11i3.269
Obaido, G., Mienye, I. D., Aruleba, K., Chukwu, C. W., Esenogho, E., & Modisane, C. (2025). A survey of contrastive learning in medical AI: Foundations, biomedical modalities, and future directions [Preprint]. Preprints.org. https://doi.org/not available
Sujith,. A. V. L. N. (2025). MOFA GAT A NOVEL DEEP LEARNING FRAMEWORK FOR MULTI OMICS INTEGRATION AND DRUG METABOLITE PATHWAY PREDICTION. Journal of Applied Bioanalysis, 728–742. https://doi.org/10.53555/jab.v11i3.289/

ISSN 2307-1257
ISSN 2307-1265
















