Modified SQEU-Net: An Enhanced U-Net Architecture With Federated Learning For Urolithiasis Segmentation And Type Classification

Authors

  • M Kishore Kumar
  • A V L N Sujith

DOI:

https://doi.org/10.65327/kidneys.v15i1.588

Keywords:

Medical Imaging; Kidney Stones; Deep Learning;  Urolithiasis; U Net.

Abstract

The precise segmentation of Urolithiasis on the basis of the computed tomography (CT) images is a key requirement to consistent diagnosis, treatment planning, and quantitative evaluation in urology. The large range of variability in stone size, shape, and distribution of intensities and the existence of the surrounding structures of the anatomy create serious problems in automated segmentation procedures, though. In order to overcome these shortcomings, this paper has suggested a new improved version of U-Net, SQEU-Net, a deep learning network, especially tailored to kidney stone segmentation. The proposed model incorporates dilated convolutions in the encoder to allow multi-scale contextualization without much spatial decrease, residual learning to enhance its ability to optimize the deep networks, and squeeze-and-excitation (SE) to recalibrate channel-wise feature responses in a dynamic manner. Besides, attention-gated skip connections are used to selectively pass clinically relevant features between the encoder and the decoder, eliminating background noise and irrelevant anatomical structures. Using the CT kidney stone data, the model is trained and tested on the data with standard segmentation measures of Dice Similarity Coefficient (DSC), Intersection over Union (IoU), accuracy, precision, recall, and F1-score measures. Comparative experiments with the state-of-the-art in the recent past show that SQEU-Net always performs better in terms of segmentation especially with regard to defining small and irregularly shaped stones. The findings confirm the usefulness of integrating contextual features learning, channel-wise attention, and spatial attention systems to achieve powerful kidney stone segmentation, one of the roles that SQEU-Net can play is a clinical reliable decision-support system.

 

Downloads

Download data is not yet available.

Author Biographies

M Kishore Kumar

Research Scholar, BEST Innovation University, Gownivaripalli, Gorantla Andhra Pradesh, India.

A V L N Sujith

Professor, Department of CSE, School of Engineering, Malla Reddy University, Hyderabad, India. Sujeeth.avln@gmail.com, Orchid ID: 0000-0003-4808-8761

References

Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol. 2010;12(2-3):e86-e96 https://pmc.ncbi.nlm.nih.gov/articles/PMC2931286/

Thongprayoon C, Krambeck AE, Rule AD. Determining the true burden of kidney stone disease. Nat Rev Nephrol. 2020;16(12):736-746. https://www.nature.com/articles/s41581-020-0320-7

Ziemba JB, Matlaga BR. Epidemiology and economics of nephrolithiasis. Investig Clin Urol. 2017;58(5):299-306. https://pmc.ncbi.nlm.nih.gov/articles/PMC5577324/

Knoll T. Epidemiology, pathogenesis, and pathophysiology of urolithiasis. Eur Urol Suppl. 2010;9(12):802-806. https://www.sciencedirect.com/science/article/pii/S156990561000241X

Pearle MS, Roehrborn CG, Pak CY. Meta-analysis of randomized trials for medical prevention of calcium oxalate nephrolithiasis. J Endourol. 1999;13(9):679-685.

Tiselius HG. Epidemiology and medical management of stone disease. BJU Int. 2003;91(8):758-767.

Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455-462. https://jamanetwork.com/journals/jama/fullarticle/200255

Brikowski TH, Lotan Y, Pearle MS. Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci USA. 2008;105(28):9841-9846.

Scales CD Jr, Smith AC, Hanley JM, Saigal CS; Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160-165. https://www.sciencedirect.com/science/article/pii/S0302283812002530

Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2021 (GBD 2021) Results. Institute for Health Metrics and Evaluation (IHME). 2024. https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(24)00503-0/fulltext

Antonelli JA, Maalouf NM, Pearle MS, Lotan Y. Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030. Eur Urol. 2014;66(4):724-729.

Hyams ES, Matlaga BR. Economic impact of urinary stones. Transl Androl Urol. 2014;3(3):278-283. https://tau.amegroups.org/article/view/4200/html

Brisbane W, Bailey MR, Sorensen MD. An overview of kidney stone imaging techniques. Nat Rev Urol. 2016;13(11):654-662. https://pmc.ncbi.nlm.nih.gov/articles/PMC5443345/

Trinchieri A. Epidemiology of urolithiasis: an update. Clin Cases Miner Bone Metab. 2008;5(2):101-106.

Rule AD, Lieske JC, Li X, Melton LJ 3rd, Krambeck AE, Bergstralh EJ. The ROKS nomogram for predicting a second symptomatic stone episode. J Am Soc Nephrol. 2014;25(12):2878-2886.

Fulgham PF, Assimos DG, Pearle MS, Preminger GM. Clinical effectiveness protocols for imaging in the management of ureteral calculous disease: AUA technology assessment. J Urol. 2013;189(4):1203-1213.

Türk C, Petřík A, Sarica K, et al. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. Eur Urol. 2016;69(3):468-474.

Moore CL, Bomann S, Daniels B, et al. Derivation and validation of a clinical prediction rule for uncomplicated ureteral stone--the STONE score: retrospective and prospective observational cohort studies. BMJ. 2014;348:g2191.

Smith-Bindman R, Aubin C, Bailitz J, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med. 2014;371(12):1100-1110.

Brisbane WG, Hoffer Z, Bailey MR, Sorensen MD, Harper JD. A comparison of non-contrast CT ionization and image quality between low kVp and conventional 120 kVp techniques in patients with kidney stones. Urology. 2020;137:52-57.

Niemann T, Kollmann T, Bongartz G. Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. AJR Am J Roentgenol. 2008;191(2):396-401.

Selvaraj J, Mohan A, Venkatachalam K, et al. CAD systems for renal stone detection: a comprehensive review. Artif Intell Rev. 2023;56(Suppl 2):2337-2372.

Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv preprint arXiv:1505.04597. 2015. https://arxiv.org/abs/1505.04597

Liu J, Wang Y, Tang H, et al. Automated kidney stone detection in CT images using deep learning. Med Phys. 2022;49(4):2545-2554.

Yildirim K, Bozdag PG, Olcucuoglu E, et al. Deep learning-based automated kidney stone detection on coronal CT images. Comput Biol Med. 2021;136:104707.

Parakh A, Lee H, Lee JH, et al. Urinary stone detection on CT images using deep convolutional neural networks. AJR Am J Roentgenol. 2019;213(3):553-559.

Heller N, Isensee F, Maier-Hein KH, et al. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge. Med Image Anal. 2021;67:101821.

He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv preprint arXiv:1512.03385. 2015

Oktay O, Schlemper J, Folgoc LL, et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv preprint arXiv:1804.03999. 2018.

Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks. IEEE Trans Pattern Anal Mach Intell. 2020;42(8):2011-2023.

Chen H, Li H, Zhang Y, et al. Deep learning for kidney stone segmentation in CT images. J Healthc Eng. 2022;2022:9876543.

Langkvist M, Jendeberg S, Thunberg P, Loutfi A. Automated segmentation of kidney stones in CT scans using deep learning. Proc SPIE. 2020;11317:113170Q.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks. arXiv preprint arXiv:1608.06993. 2016.

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018;40(4):834-848.

Woo S, Park J, Lee JY, Kweon IS. CBAM: Convolutional Block Attention Module. arXiv preprint arXiv:1807.06521. 2018.

Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929. 2020.

Liu Z, Lin Y, Cao Y, et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. arXiv preprint arXiv:2103.14030. 2021.

Hatamizadeh A, Tang Y, Nath V, et al. UNETR: Transformers for 3D Medical Image Segmentation. arXiv preprint arXiv:2103.10504. 2021.

Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv preprint arXiv:1807.10165. 2018.

Global Burden of Disease Study 2019 (GBD 2019) Results. Institute for Health Metrics and Evaluation (IHME). 2020. http://ghdx.healthdata.org/gbd-results-tool

Yildirim K, Bozdag PG, Talo M, Yildirim O, Karabatak M, Acharya UR. Deep learning model for automated kidney stone detection using coronal CT images. Comput Biol Med. 2021;135:104569. https://pubmed.ncbi.nlm.nih.gov/34157470/

Elton DC, Turkbey EB, Pickhardt PJ, Summers RM. A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans. Med Phys. 2022;49(4):2545-2554. https://pubmed.ncbi.nlm.nih.gov/35156216/

Parakh A, Lee H, Lee JH, Eisner BH, Sahani DV, Do S. Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization. Radiol Artif Intell. 2019;1(4):e180066. https://pubs.rsna.org/doi/10.1148/ryai.2019180066

Heller N, Isensee F, Maier-Hein KH, et al. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med Image Anal. 2021;67:101821. https://pubmed.ncbi.nlm.nih.gov/33049579/

Li D, Xiao C, Liu Y, Chen Z, Hassan H, Su L, et al. Deep segmentation networks for segmenting kidneys and detecting kidney stones in unenhanced abdominal CT images. Diagnostics (Basel). 2022;12(8):1788. https://www.mdpi.com/2075-4418/12/8/1788

Längkvist M, Jendeberg J, Thunberg P, Loutfi A, Lidén M. Computer aided detection of ureteral stones in thin slice computed tomography volumes using convolutional neural networks. Comput Biol Med. 2018;97:153-160. (Note: Closest matching early work; direct 2020 SPIE reference not found, but this aligns with the description.)

Rao NJ, et al. A two-stage deep learning framework for kidney stone detection and clinical severity grading in CT imaging. Heliyon. 2025. https://www.sciencedirect.com/science/article/pii/S2352914825000930

Anonymous (or institutional). Fine-tuned deep learning models for early detection and classification of kidney conditions in CT imaging. Sci Rep. 2025. https://www.nature.com/articles/s41598-025-94905-2

Sujith, A. V. L. N.. (2025). Integrating bioanalysis and deep learning ECGNet hybrid for real-time ECG pattern recognition. Journal of Applied Bioanalysis, 11(3), 534–545. https://doi.org/10.53555/jab.v11i3.269

Vasudeva N, Dhaka VS, Sinwar D. Enhancing kidney stone diagnosis with AI-driven radiographic imaging: a review. Discov Artif Intell. 2025;5:200. https://link.springer.com/article/10.1007/s44163-025-00434-2

Sujith,. A. V. L. N. (2025). MOFA GAT A NOVEL DEEP LEARNING FRAMEWORK FOR MULTI OMICS INTEGRATION AND DRUG METABOLITE PATHWAY PREDICTION. Journal of Applied Bioanalysis, 728–742. https://doi.org/10.53555/jab.v11i3.289/

Downloads

Published

2026-01-21

How to Cite

M Kishore Kumar, & A V L N Sujith. (2026). Modified SQEU-Net: An Enhanced U-Net Architecture With Federated Learning For Urolithiasis Segmentation And Type Classification. KIDNEYS, 15(1), 01–14. https://doi.org/10.65327/kidneys.v15i1.588

Issue

Section

Research Article