Gitelman Syndrome: a Сlinical and Molecular Overview

Authors

  • Maria Luisa Querques Nephrology, Dialysis and Renal Transplant Unit, A.O. Ospedale Niguarda-Ca’ Granda, Milan, Italy
  • Federica Ravera Nephrology, Dialysis and Renal Transplant Unit, A.O. Ospedale Niguarda-Ca’ Granda, Milan, Italy
  • Alberto Menegotto Nephrology, Dialysis and Renal Transplant Unit, A.O. Ospedale Niguarda-Ca’ Granda, Milan, Italy
  • Giacomo Colussi Nephrology, Dialysis and Renal Transplant Unit, A.O. Ospedale Niguarda-Ca’ Granda, Milan, Italy

DOI:

https://doi.org/10.22141/2307-1257.0.3.13.2015.74915

Keywords:

Gitelman syndrome, renal tubulopathy/tubular disorder, SLC12A3 gene, Na -Cl– cotransporter, hypokalemia, hypocalciuria, metabolic alkalosis, chondrocalcinosis, tetany

Abstract

Gitelman syndrome (OMIM #263800) is an autosomal recessive renal tubular disorder due to loss of function mutations of SLC12A3 gene, encoding the thiazide-inhibitable, electroneutral Na+-Cl– cotransporter (NCC) of the distal convoluted tubule. Clinical consequences include chronic normotensive hypokalemic alkalosis, hypomagnesemia, hypocalciuria, polyuria/nocturia, chronic asthenia, muscular cramps, chondrocalcinosis and rarely cardiac arrhythmias.
Impaired reabsorption of glomerular filtrate through NCC drives compensatory reabsorption of Na+ in more distal tubular segments (connecting and cortical collecting tubules) via both the «electrogenic» channel ENa (which also enhances tubular secretion of potassium and protons, explaining the hypokalemic alkalosis), and pendrin-dependent electroneutral NaCl reabsorption. Thus volume depletion is seldom severe in these patients.
There exists wide variability and severity of clinical symptoms between subjects, ranging from an almost asymptomatic disease to a severely disabling one. More than 400 SLC12A3 mutations have been so far described, evenly distributed along the protein sequence and without any hot spot. Mutation detection rate by gene sequencing actually is about 80 %. There are no genotype-phenotype correlations.
Commonly considered a benign condition, Gitelman syndrome may be associated with reduced quality of life, increased medicalization and high hospitalization rate.

Downloads

Download data is not yet available.

References

Bettinelli A., Bianchetti M.G., Girardin E. et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkolosis: Bartter and Gitelman syndromes // Journal of Pediatrics 1992; 120: 38-43.

Bettinelli A., Tosetto C., Colussi G. et al. Electrocardiogram with prolonged QT interval in Gitelman disease // Kidney International 2002; 62: 580-584.

Boyden L.M., Choi M., Choate K.A. et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities // Nature 2012; 482 (7383): 98-102.

Caiata-Zufferey M., Zanini C.A., Schulz P.J. et al. Living with Gitelman disease: an insight into patients’ daily experiences // Nephrology Dialysis and Transplantation 2012; 27(8): 3196-3201.

Chang H., Tashiro K., Hirai M. et al. Identification of a cDNA encoding a thiazide-sensitive sodiumchloride cotransporter from the human and its mRNA expression in various tissues // Biochemical and Biophysical Research Communications 1996; 223: 324-328.

Colussi G., Rombolà G., Verde G. et al. Distal nephron function in Bartter’s syndrome: abnormal conductance to chloride in the cortical collecting tubule? // American Journal of Nephrology 1992a; 12: 229-239.

Colussi G., Rombolà G., Airaghi C., De Ferrari M.E., Minetti L. Pseudo-Bartter’s syndrome from surreptitious diuretic intake: differential diagnosis with true Bartter’s syndrome // Nephrology Dialysis and Transplantation 1992b; 7: 896-901.

Colussi G., Macaluso M., Brunati C., Minetti L. Calcium metabolism and calciotropic hormone levels in Gitelman sindrome // Mineral Electrolyte Metabolism 1994a; 20: 294-301.

Colussi G., Rombolà G., Macaluso M., De Ferrari M.E., Minetti L. Correction of hypokalemia with antialdosterone therapy in Gitelman’s sindrome // American Journal of Nephrology 1994b; 14: 127-135.

Colussi G., Bettinelli A., Tedeschi S. et al. A Thiazide Test for the Diagnosis of Renal Tubular Hypokalemic Disorders // Clinical Journal of the American Society of Nephrology 2007; 2: 454-60.

Coto E., Rodriguez J., Jeck N. et al. A new mutation (intron 9 +1 G>T) in the SLC12A3 gene is linked to Gitelman syndrome in Gypsies // Kidney International 2004; 65(1): 25-9.

Cruz D., Simon D.B., Nelson-Williams C. et al. Mutations in the Na–Cl cotransporter reduce blood pressure in humans // Hypertension 2001; 37: 1458-1464.

De Jong J.C., Willems P.H., Mooren F.J. et al. The structural unit of the thiazide-sensitive NaCl cotransporter is a homodimer // Journal of Biological Chemistry 2003; 278: 24302-24307.

Dimke H. Exploring the intricate regulatory network controlling the thiazide-sensitive NaCl cotranporter (NCC) // Pflugers Archives-European Journal of Physiology 2011; 462: 767-777.

Fava C., Montagnana M.L., Rosberg L. et al. Subjects heterozygous for genetic loss of function of the thiazide-sensitive cotransporter have reduced blood pressure // Human Molecular Genetics 2008; 17 (3): 413-418.

Gill J.R., Bartter F.C. Evidence for prostaglandin-independent defect in chloride reabsorption in the loop of Henle as a proximal cause of Bartter’s syndrome // American Journal of Medicine 1978; 65: 766-772.

Gitelman H.J., Graham J.B., Welt L.G. A new familial di­sorder characterized by hypokalemia and hypomagnesemia // Transactions of the American Association of Physicians 1966; 79: 221-223.

Grimm P.R., Lazo-Fernandez Y., Delpire E. et al. Integrated compensatory network is activated in the absence of NCC phosphorylation // J. Clin. Invest. 2015; 125(5): 2136-2150.

Hoover R.S., Poch E., Monroy A. et al. N-glycosylation at two sites critically alters thiazidebinding and activity of the rat thiazide-sensitive Na:Cl cotransporter // Journal of the American Society of Nephrology 2003; 14: 271-282.

Joo K.W., Lee J.W., Jang H.R. et al. Reduced urinary excretion of thiazide-sensitive Na-Cl cotransporter in Gitelman syndrome: preliminary data // American Journal of Kidney Diseases 2007; 50: 765-773.

Kahle K.T., Ring A.M., Lifton R.P. Molecular physiology of the WNK kinases // Annual Revue of Physiology 2008; 70, 329-355.

Kim Y.K., Song H.C., Kim W.Y. et al. Acquired Gitelman Syndrome in a Patient With Primary Sjögren Syndrome // American Journal of Kidney Diseases 2008; 52(6): 1163-67.

Kunchaparty S., Palcso M., Berkman J. et al. Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman’s syndrome // American Journal of Physiology Renal Physiology 1999; 277: F643-F649.

Lo Y.F., Nozu K., Iijima K. et al. Recurrent deep intronic mutations in the SLC12A3 gene responsible for Gitelman’s syndrome // Clinical Journal of the American Society of Nephrology 2011; 6(3): 630-9.

Loffing J. et al. Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman’s syndrome // Journal of the American Society of Nephrology 2004; 15: 2276-2288.

Maki N., Komatsuda A., Wakui H. et al. Four novel mutations in the thiazide-sensitive Na-Cl co-transporter gene in Japanese patients with Gitelman’s syndrome // Nephrology Dialysis and Transplantation 2004; 19(7): 1761-6.

Mascetti L., Bettinelli A., Simonetti G.D. et al. Pregnancy in inherited hypokalemic salt-losing renal tubular disorder // Obstetrics and Gynecology 2011; 117: 512-516.

Mastroianni N., De Fusco M., Zollo M. et al. Molecular cloning, expression pattern, and cromosoma localization of the human Na-Cl thiazide-sensitive cotransporter (SLC12A3) // Genomics 1996a ; 35: 486-493.

Moes D.M., van der Lubbe N., Zietze R., Loffing J., Hoorn E.J. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation // Pflugers Archives-European Journal of Physiology 2014; 466: 107-118.

Needham P.G., Mikoluk K., Dhakarwal P. et al. The Thiazide-sensitive NaCl Cotransporter Is Targeted for Chape­rone-dependent Endoplasmic Reticulum-associated Degradation // Journal of Biological Chemistry 2011; 286; 43611-43621.

Nijenhuis T., Vallon V., Kemp A.W.C.M. et al. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia // Journal of Clinical Investigation 2005; 115 (6):1651-1658.

Nozu K., Iijima K., Nozu Y. et al. A deep intronic mutation in the SLC12A3 gene leads to Gitelman syndrome // Pediatric Research 2009; 66: 590-593.

Nozu K., Lijima K., Kanda K. et al. The Pharmacological Characteristics of Molecular-Based Inherited Salt-Losing Tubulopathies // Journal of Clinical Endocrinology and Metabolism 2010; 95: doi:10.1210/jc.2010-0392.

Richardson C., Rafiqi F.H., Karlsson H.K. et al. Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1 // Journal of Cell Science 2008; 121(5): 675-84.

Riveira-Munoz E., Chang Q., Bindels R.J., Devuyst O. Gitelman’s syndrome: towards genotype-phenotype correlations? // Pediatric Nephrology 2007; 22: 326-332.

Sabath E., Meade P., Berkman J. et al. Pathophy­siology of functional mutations of the thiazide-sensitive Na-Cl cotransporter in Gitelman disease // American Journal of Physiology and Renal Physiology 2004; 287: F195-F203.

Sartori M., Parotto E., Bonso E. et al. Autonomic Nervous System Function in Chronic Hypotension Associated With Bartter and Gitelman Syndromes // American Journal of Kidney Diseases 2007; 49(2); 330-335.

Scognamiglio R., Negut C., Calò L.A. Aborted sudden cardiac death in two patients with Bartter’s/Gitelman’s syndromes // Clinical Nephrology 2007; 67: 193-197.

Simon D.B., Nelson-Williams C., Johnson-Bia M. et al. Gitelman’s variant of Bartter’s syndrome inhe­rited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive NaCl cotransporter // Nature Genetics 1996; 12: 24-30.

Syrén M.L., Borsa Ghiringhelli N., Bettinelli A. et al. The mutation c.1196_1202dup7bp (p.Ser402X) in the SLC12A3 gene clusters in Italian Gitelman syndrome patients and reflects the presence of a common ancestor // Nephrology Dialysis and Transplantation 2011; 26(2): 557-61.

Vargas-Poussou R., Dahan K., Kahila D. et al. Spectrum of mutations in Gitelman syndrome // Journal of the American Society of Nephrology 2011; 22(4): 693-703.

Yang S.S., Fang Y.W., Tseng M.H. et al. Phosphorylation regulates NCC stability and transporter activity in vivo // Journal of the American Society of Nephrology 2013; 24: 1587-1597.

Zhang C., Zhu Y., Huang F. et al. Novel missense mutations of WNK1 in patients with hypokalemic salt-losing tubulopathies // Clinical Genetics 2013; 83: 545-552.

Downloads

Published

2022-01-19

How to Cite

Querques, M. L., Ravera, F., Menegotto, A., & Colussi, G. (2022). Gitelman Syndrome: a Сlinical and Molecular Overview. KIDNEYS, (3.13), 9–20. https://doi.org/10.22141/2307-1257.0.3.13.2015.74915

Issue

Section

Guest Articles